

Exploring ILP for VLIW architecture by Quantified Modeling and Dynamic Programming-based Instruction Scheduling

Author: Can Deng, Zhaoyun Chen, Yang Shi, Xichang Kong and Mei Wen*

Reporter: Can Deng

• PART 1: Introduction

• PART 2: Method

• PART 3: **Results**

• PART 4: Conclusion

PART 1

Introduction

1.1 Background

- VLIW architecture is widely adopted in dedicated processors
- The performance of VLIW processors is getting higher and higher

1.1 Background

• Disadvantage:

LS algorithms make a decision from the feasible solutions in a local view

► The efficiency of the final solution is unpredictable

	LS (list scheduling)	DP (dynamic programming)
Searching space	Loccal view	Global view
Goal	Feasible solution	Optimal solution
Time overhead	Low	low
Space Complexity	Low	High

1.2 Motivation

- Propose a dynamic programming based strategy (DPS) to make a trade-off
- Achieve a high efficiency scheduling solution within acceptable time overhead
- Construct a quantifiable model for the instruction scheduling problem and get a theoretical upper bound of efficiency

Method

2.1 • Objective:

$$min(T) = min(max(\sum_{q=0}^{T_0-1}(1-\sum_{t=0}^{q}X_{i,t}^f)+C_i))$$

• Constraints:

$$\sum_{f=0}^{m-1} \sum_{t=0}^{T_0 - 1} X_{i,t}^f = 1 \; (\forall I_i \in \mathbf{I}) \tag{1}$$

$$\sum_{f=0}^{m-1} \sum_{t=0}^{T_0-1} Y_{i,f} \cdot X_{i,t}^f = 1 \; (\forall I_i \in \mathbf{I})$$
(2)

$$\sum_{i=0}^{n-1} X_{i,t}^{f} \le 1 (\forall t \in \mathbf{T}, \forall F_{f} \in \mathbf{F})$$
(3)

$$S_i + Edge_{i,l} \leq S_l \ (I_i, I_l \in I)$$

1	л	١
	4)

$I = \{I_0 \dots I_i \dots I_{(n-1)}\}$	Sequence of Instruction
$\boldsymbol{F} = \{F_0 \dots F_f \dots F_{(m-1)}\}$	Sequence of function unit
$\boldsymbol{T} = \{0t(T_0-)\}$	Sequence of cycle
$X_{i,t}^{f}$	Binary variable {0,1}
Y _{i,f}	Binary variable {0,1}

2.2 Dynamic Programming-Based Strategy(DPS)

2.2.1 State Computation

Algorithm 1: State Computation				
Input: Instructions				
Output: States				
1 f	or $i \leftarrow 0$ to $(n-1)$ do			
2	//n is the number of instructions;			
3	if $chl = 0$ then			
4	<i>//chl</i> is the number of children;			
5	$p[i] \leftarrow C_i$			
6	else			
7	for $j \leftarrow 0$ to $(chl - 1)$ do			
8	$ p[i] \leftarrow \max(p[j] + Edge_{i,j}, C_i);$			

 $p[i] = \max(p[j] + Edge_{i,j}, C_i)$

State Computation

Highest State First

Descending sort with states

2.2.2 Instruction Assignment

2.3 Experiments

- **Platform**: FT-Matrix DSP
- Benchmark: Transcendental Functions
- **BaseLines**: Heterogeneous Earliest Finish Time (HEFT), Critical-Path-Node-Dominant (CPND), and Longest Job First (LJF)

PART 3

Results

3.1 Execution cycle of solutions

3.2 Efficiency

3.2 Time Overhead

Conclusion

4. Conclusion

- The DPS proposed in this work achieves a trade-off between execution and time overhead
- Compared with the three LS algorithms, DPS shows a good scalability and efficiency improvement of up to 44% within acceptable time overhead
- One future work is to explore the optimization space toward the optimal solutions.

Thank you!