A Task Parallelism Runtime Solution for
Deep Learning Applications using MPSoC
on Edge Devices

Hua Jiang, Raghav Chakravarthy, Ravikumar V C

Agenda

» Introduction and Background
» Solution Overview

» Static compilation

» Dynamic execution

» Performance

» Open-source

» Conclusion

Introduction and Background

Al On Edge Device Is Booming

Al edge device attach rates, world markets: 2019-25

100% -
80%
60%
40%
20%
0% ;7 - = I = = T - V T I T
2019 2020 2021 2022 2023 2024
s AUtomotive = CONsumer and enterprise robots ess=Drones
HMDs s Mobile phones wwPCs/tablets
— SeCUrity cameras Smart speakers == Machine vision

Edge servers

Source: Omdia

© 2020 Omdia

Neural Network Compute Process on Edge Device

Deep Learning Neural Network Compute Process

Neural Network Dyréar'::t:\ or Static Executable Gra BackEnd

1F C) utvm Stvm [

Design Layer e Operator Computation e Deploy - NtoM e Backend Manage e Offload Alg to Hardware

Op Structure e Layer Dependency e Optimization e Control Flow
Constraint e Parallelism e Auto Schedule e Data Management
(FLOPs)

CNN, GAN,RNN

Al Deployment Challenges on Edge Device

Data parallelism is challenging on heterogeneous core

4)
Map N Al tasks to M backend heterogenous cores

- J
[N

Neural network task level splitting is complex

AN

-
Efficient scheduler needed for heterogenous cores
Different heterogenous backends have different compute performances

Needs to orchestrate graph between the heterogenous cores
Efficiently handle and manage control flow and data flow

\ j

Our Solution
4)

Adapt task parallelism and pipelining on heterogeneous cores

- J
4 N

Optimize NN compiler to compile for M heterogenous backend cores.

- J
e)

Provision auto splitting and hand tuning process
- J
~

Efficient Scheduling on heterogenous cores
Separate control flow from data flow and set different hardware affinity
Use compute intensive operator as boundary to split graph

- /

7

Solution Overview

Solution Architecture

Compute Graph

) e Sub-graph
\\ Sub-graph Linking I:>

Static Compilation v
\ Sub-graph Compilation

Thread 1

Sub-graph 1

Thread 2

Sub-graph 2 :
Thread n

\ Dynamic Execution Sub-graph n

ﬁ Static Compilation

» Graph splitting
linking

compilation

scheduling

\

~

 Sub-graph
* Sub-graph
2. Dynamic Execution

* Runtime loading
c Runtime

/

Static Compilation

Static Compilation - Overview

Neural Network Model

1"

Static Compilation

Graph Splitting

Sub-graph

Linking

Hand tuning
framework

Automatic tuning
framework

Sub-graph
Compilation

Splitting API

Single file
output API

Dependency
creation API

Multiple backend
compilation

Sub-graph DAG
check API

The first step of static compilation
is to split compute graph into
multiple sub-graph, user can either
use expert mode hand tuning or
automatic mode automatic tuning
to do the graph split work.

The second step is to linking these
sub-graph into a sub-graph DAG to
pipeline or parallelism run these
sub-graph, there are also two
mode one is hand mode another is
automatic mode.

The third step is compilation, it
would create a single output file

include multiple executable sub-
graph and the dependency relation
between the sub-graph.

Graph Splitting — Mapping neural network to Compute Graph

// Neural Network ~\ / Neural Network / Compute Graph \
Formula Notation Functions © (o Neural network start from a
0 = Tuple(‘ formula notation
Convad
Wi
Conv2d(y
),ﬁf%;’b)’w com C(’E& %“’]‘{2"] (Comzd Convert to a list function can
ngg’fd(:> Q split NN formula into a group of
Conv2d(add | [Aad steps but lack of dependency
Add(d, b), w relation of each function.
)), b),w) Conv2d
Compute graph describe the
data flow reduce the model
_ J \ j complexity and support
Abbreviation | _Full Form automatic differentiation to
d Input data . 5
b Bias implement generic backward
s propagation.

Graph Splitting- Graph Hand Splitting

Compute Graph Hand Define Sub-graph Scope Text Form

fn(%x) { This solution provide
graph split function to help
user to split the graph

:::::::::::::::: | %1 = Conv2d(d, w)
| |2=Addtin,b
;%3 = Multiply(%2, w)
soond || |4z Convadtd W)
|
|

I
I
I
I
I
%5 = Add (%4, b) | A Graph form can get
%6= Multiply(%5,w) convert into a text form,
A - A\ | :>%7=C°nv2d(%6, W) } user can use a text form to
%8=Add%4,b) define the sub-graph

%9 = Multiply(%8, w) }
I

scope
%10 = Conv2d(%9, w)
%11 = Tupe(%7, %10

|
|
”EMiﬂ=£1h"€\ﬁf[’H %11 By define start operator
| } and end operator user can
” Abbreviation [Full Form define the Sub-graph
| —— scope
———————— — —— ——) W Weight

0 Result

13

Graph Splitting-Graph Hand Splitting, Backend associate

Compute Graph Hand Define Sub-graph Scope

@ @
User can manually
Gonad Conadl—® create a configuration
file to associate sub-
, Multipt raph with a backend
LW =2 M W) pipe_cfglsub—-graphl] = { grap
m m "device": "fpga()"}
0 @ » pipe_cfglsub—graph2] = {
"device": "cpu()"}
Conv2d | 0 pipe_cfglsub—graph3] = {
Eé} o "deVice": ||gpu()||}
: Multiply W) .
The backend binding
il will get use in
Abbreviation |Full Form Compllatlon Step
d Input Data
Convad, (w) m

b
w Weight
0 Result

Graph Splitting-Graph Auto Splitting, Tuning

T

T2

Tm Compute Layer With Performance Data

T T2

A e S L
/ s \\
i W |
o [Cond | 9 | Convad :

I
| Compute h 0 :
! Layer3 o " Layer 4 0 |
: |: :
|
| Add | [Add |
Y 0 A 4
P i A \ —
[Cmadle—g) | R
I Y 1
|
: c o | SETIR
I Compute '
(\ | | p=h ﬂ T
| Layer2 M | i ! :
T . 1
i N
-l
) _Add e Tn
Ny Y
\ T . 4
M v g e T
I [
/ |

I O

¢V ‘eccccsssssssgNecccnnnnnnnnn-

LI % f) W Weight

I * 0 Result

15

After do operator tuning, we
can get each operator
performance data on each
backend.

Use compute intensive
operator as a boundary to
group operator to create a

compute layer

The compute layer
performance is the
summarize of each operator
in this compute layer.

Graph Splitting-Graph Auto Splitting, Sub-graph balance

Compute Graph Grouping By Sub-graph

Auto splitting is an
automatic process, this
process will base on the
tuning performance data
to group the compute
layer and create sub-
graph .

List Of Sub-graph

Sub-graph backend
association

»

After creating sub-graph,

Sub-graph DAG

1 D rtsrzee auto splitting will balance
| Layer 1
| : . every sub-graph to make
| :\ | sure after backend binding
| ':‘.'.'.'.'.'.'.'.'.'.'.'. e I Abbreviation |Full Form eaCh Subg raph Spend
:Compute] d Input Data .. .
| Lapr 1 = similar time

b
= o o o o ‘aaar e napdll s as i aae W [Weight
0 Result

16

Sub-graph Linking - Overview

After do graph splitting,
the sub-graph parallelism
become possible , but the
original compute logic get
broken, we use a sub-
graph DAG to re-create
the original compute logic

Sub-graph 2 Sub-graph 3
[On | 01] [On

—

Use Sub-graph DAG to
describe dependency
between sub-graph and
define sub-graph compute

scope and find the
1,2,3 Sub-graph execution order in pipeline execution order.

Abbreviation Full Form

| Input interface
(0] Qutput interface

17

Sub-graph Linking -Create Sub-graph DAG, Hand Linking

modl, mod2, mod3 = my_manual_partitioner()
pipe_cfg = PipelineModuleConfig()

Define pipeline inputs. Here I assume two inputs of modl and one input of mod3 are the pipeline inputs.
pipe_config.connect(pipe_config.pipe_input("data_0"), pipe_config[modl].input("data_o"))
pipe_config.connect(pipe_config.pipe_input("data_1"), pipe_config[mod1l].input("data_1"))
pipe_config.connect(pipe_config.pipe_input("data_2"), pipe_config[mod3].input("data_1"))

Define pipeline outputs to be the first output of mod3.
pipe_config.connect(pipe_config[mod3].output(@), pipe_config.pipe_output("e"))

Define connections.
pipe_config.connect(pipe_config[modl].output(@), pipe_config[mod2].input("data_0")) # modl.output(®) -> mod2.data_e
pipe_config.connect(pipe_config[mod2].output(@), pipe_config[mod3].input("data_1")) # mod2.output(®) -> mod3.data_1

Print config for debugging
print(str(pipe_cfg))

Inputs:

|- data_@: modl.data_e

|- data_1: modl.data_1

|- data_2: mod3.data_o

Outputs:

|- output(@): mod3.output(e)

Connections:

|- modl.output(@) -> mod2.data_e
|- mod2.output(@) -> mod3.data_1

18

User can manually link
sub-graph to create a sub-
graph DAG, this solution
provide a list of user-
friendly APl to help for
such work.

The link need to link global
input with sub-graph input
and global output with sub-
graph output, it also need
to link sub-graph to build
dependency relation for
data flow

Sub-graph Linking-Create Sub-graph DAG, Auto Linking

Step 1

Configure and
Connect to target

device

Rt

01

19

02

Step 2
Operator
Tuning
On Backend
cores

Step 3
Balance sub-
graph

Step 4
Create
Dependency
Of
Sub-graph

Step 5
Output
Sub-graph
DAG

This solution also
provide an
automatic solution

automatically
creating sub-
graph DAG.

Automatically Link
Sub-graph steps

as the diagram
shown

Sub-graph Compilation-Configuration and Compile

pipe cfg[sub-grapho] { "target": "1llvm",

"customized build func": None,
"device": "Cpu" COmplle MUItlple
} backend in one place.

pipe cfg[sub-graphl] { "target": "opencl",
"customized build_ func":None,
"device": "gpu

}

{ "target": armcc,
"customized build func": vta build,
"device": "fpga"

}

Manually define the
mapping of sub-graph

ipe cfg[sub-graph2
pipe_cfg[sub-graph2] and backend.

This solution also

Use the config to build a pipeline executor provide an automatically

with relay.build config(opt_level=3):
lib = pipeline_executor.build pipeline(pipe cfg)

solution to automatically
generate the configure.

20

Sub-graph Compilation-Output

21

File

Concatenated Sub-graph Compilation Output File

N\

Export File Header

pra—

Sub-graph 1 Header

)

Library

Export File Header

Parameters

Control flow JSON

Sub-graph n Header

Library

:

Parameters

Sub-graph Configuration
and Executable Files

A

Control flow JSON

Output compile result in
single file

This file is the input of JIT
Running, it include
executable sub-graph
binary and model per sub-
graph parameters and
control flow infroamtion.

22

Dynamic Execution

Dynamic Execution- Overview

Runtime
Interface

Executable

Subgraph

Memory

management Thread

Backend
Runtime

Management
Data

Forwarding

os

23

Schedule multiple backends
and forward data between
these backends

The first step is to load the
output file of “Static
compilation” module, then
user calling this runtime
interface to set and get
data ,internally the scheduler
will schedule the sub-graph on
different backend.

Loading configuration and initialization

[Load executable sub-graph }

s N

Load neural network per sub-graph parameters

- g Loading and initialize
a)

Load sub-graph DAG

_ J

{Initialize forwarding queue and threads pool }

24

Threads Management

Running control flow and
normal computation on
CPU and a run the highly
intensive computation on
accelerator.

Control Flow and
Normal Computation

Sub-graph 1 —_—/_/’_
Sub-graph 2

Sub-graph n =

Thread Pool

oan infensive Each sub-graph would
omputation . .
/ have it own working
threads pool binding with

specify CPU resource.

25

Scheduler

Input1 _Input2_ Input3 Input 4

The non-dependent sub-

~
\

! : b b | graphs can get schedule
1—-[860 J[seo -[SGO SGO]--________________:QE’U_*___._._,_, in parallel mode and
ooy oo o oo 'A53 CPU 0-1 these sub-graphs have
! j"(e ,(Selas . I dependency will execute
;o861 1861 “1.8G1 {,561 I.EZ?‘?;‘.’:GZ ----- in pipeline
. (& s G O 5 :
C ! v, Parallel -
! I) e iy s N \\ N ||
| SG2 \SGZ J SG2 ‘\\SGZ L N __i;EEGAfIJ _______ X
' D o S e e o e = Ju. - . —nAB3CPU3 Scheduler using the
! * e . ey T I dependency queue to
P Nouon Youom Yooy e . control the sub-graph
. ‘SG3 {SG} } [363][363 } .RPU 0-1 execution is pipeline or
. . . N ‘ : e | parallelism.
, Plp9|lne Result! Result2 Result3 Result4 -
|

26

Example Object detection

Image 1 Image 2 Image 3 Image 4 [:] [eru
- Pre/Post Data process
= " — T
m - _ on
ML Network
. e
: \\‘. \'a. | |
Pre-pmcasslng | Pre—processlng Pre-processing Pre-processing | I
[Image size] : [Image size] [Image size] [Image size] I | GPU + A53 CPU 0
i ;_ i conversion conversion) ! _‘l _______________ L ____________________________
[Image data J [Image data] Image data [Image data] I
- I
<~ e SR i B |
.. . i
|

Pipelining aids parallel
processing of multiple
image at the same time and
improves performance

o

/

Result1 Result2 Result3 Result4

27

28

Performance

Performance

Performance data on Xilinx Ultra96 board comparing our proposed solution and TVM-VTA.

Network Type Architecture Type

TVM-VTA Proposed Solution

Pipelining and
parallelism shows ~1.3x
performance

Resnet18 12FPS 16FPS improvement compared
to sequential processing

: in heterogenous system
Yolov3-tiny 6FPS 8FPS

29

30

Open-source

Open-source

Part of This Solution already Merged into Upstream TVM Codebase

https://github.com/apache/tvm/pull/8702

https://github.com/apache/tvm/pull/9108

31

32

Conclusion

Conclusion

» Achieved significant performance improvements and flexibility compared to existing
frameworks

» The framework is completely open-source and we hope community can contribute further
to extend it capability

» The work for sub-graph pipelining and parallelism upstream to the TVM community,
Several of our patches have been accepted and the remaining patches are planned to be

completed soon.

33

