
A Task Parallelism Runtime Solution for
Deep Learning Applications using MPSoC
on Edge Devices

Hua Jiang, Raghav Chakravarthy, Ravikumar V C

Agenda

2

!Introduction and Background

!Solution Overview

!Static compilation

!Dynamic execution

!Performance

!Open-source

!Conclusion

Introduction and Background

3

AI On Edge Device Is Booming

4

Neural Network Compute Process on Edge Device

5

AI Deployment Challenges on Edge Device

6

Data parallelism is challenging on heterogeneous core

Map N AI tasks to M backend heterogenous cores

Neural network task level splitting is complex

Efficient scheduler needed for heterogenous cores
• Different heterogenous backends have different compute performances
• Needs to orchestrate graph between the heterogenous cores
• Efficiently handle and manage control flow and data flow

Our Solution

7

Adapt task parallelism and pipelining on heterogeneous cores

Optimize NN compiler to compile for M heterogenous backend cores.

Provision auto splitting and hand tuning process

Efficient Scheduling on heterogenous cores
 Separate control flow from data flow and set different hardware affinity
 Use compute intensive operator as boundary to split graph

8

Solution Overview

Solution Architecture

9

1. Static Compilation
• Graph splitting
• S u b - g r a p h

linking
• S u b - g r a p h

compilation
2. Dynamic Execution

• Runtime loading
• R u n t i m e

scheduling

10

Static Compilation

Static Compilation - Overview

11

The first step of static compilation
is to split compute graph into

multiple sub-graph, user can either
use expert mode hand tuning or

automatic mode automatic tuning
to do the graph split work.

The second step is to linking these
sub-graph into a sub-graph DAG to
pipeline or parallelism run these
sub-graph, there are also two
mode one is hand mode another is
automatic mode.

The third step is compilation, it
would create a single output file
include multiple executable sub-
graph and the dependency relation
between the sub-graph.

Graph Splitting – Mapping neural network to Compute Graph

12

Neural network start from a
formula notation

Convert to a list function can
split NN formula into a group of
steps but lack of dependency
relation of each function.

Compute graph describe the
data flow reduce the model
c o m p l e x i t y a n d s u p p o r t
automatic differentiation to
implement generic backward
propagation.

Graph Splitting- Graph Hand Splitting

13

By define start operator
and end operator user can
def ine the sub-graph
scope

This solut ion provide
graph split function to help
user to split the graph

A Graph form can get
convert into a text form,
user can use a text form to
def ine the sub-graph
scope

14

Graph Splitting-Graph Hand Splitting, Backend associate

14

The backend binding
w i l l g e t u s e i n
compilation step

User can manual ly
create a configuration
file to associate sub-
graph with a backend

Graph Splitting-Graph Auto Splitting, Tuning

15

Use compute intensive
operator as a boundary to
group operator to create a
compute layer

T h e c o m p u t e l a y e r
p e r f o r m a n c e i s t h e
summarize of each operator
in this compute layer.

After do operator tuning, we
can get each operator
performance data on each
backend.

Graph Splitting-Graph Auto Splitting, Sub-graph balance

16

After creating sub-graph,
auto splitting will balance
every sub-graph to make

sure after backend binding
each subgraph spend

similar time

A u t o s p l i t t i n g i s a n
automatic process, this
process will base on the
tuning performance data
to group the compute
layer and create sub-
graph .

List Of Sub-graph

Sub-graph backend
association

Sub-graph DAG

Sub-graph Linking - Overview

17

Use Sub-graph DAG to
descr ibe dependency
between sub-graph and
define sub-graph compute
s c o p e a n d f i n d t h e
execution order.

After do graph splitting,
the sub-graph parallelism
become possible , but the
original compute logic get
broken, we use a sub-
graph DAG to re-create
the original compute logic

Sub-graph Linking -Create Sub-graph DAG, Hand Linking

18

User can manually link
sub-graph to create a sub-
graph DAG, this solution
provide a list of user-
friendly API to help for
such work.

The link need to link global
input with sub-graph input
and global output with sub-
graph output, it also need
to link sub-graph to build
dependency relation for
data flow

19

Sub-graph Linking-Create Sub-graph DAG, Auto Linking

Automatically Link
Sub-graph steps
as the diagram
shown

Step	2	
Operator
Tuning

On Backend
cores

Step	3	
Balance sub-

graph

Step	4	
Create

Dependency
Of

Sub-graph

Step	5	
Output

Sub-graph
DAG

Step	1	
Configure	and	

Connect	to	target	
device	

01

02

03

04

05

This solution also
p r o v i d e a n
automatic solution
a u t o m a t i c a l l y
c r e a t i n g s u b -
graph DAG.

Sub-graph Compilation-Configuration and Compile

20

C o m p i l e M u l t i p l e
backend in one place.

Manual ly def ine the
mapping of sub-graph
and backend.

T h i s s o l u t i o n a l s o
provide an automatically
solution to automatically
generate the configure.

Sub-graph Compilation-Output

21

Output compile result in
single file

This file is the input of JIT
R u n n i n g , i t i n c l u d e
executable sub-graph
binary and model per sub-
graph parameters and
control flow infroamtion.

22

Dynamic Execution

Dynamic Execution- Overview

23

Schedule multiple backends
and forward data between

these backends

The first step is to load the
o u t p u t f i l e o f “ S t a t i c
compilation” module, then
user call ing this runtime
interface to set and get
data ,internally the scheduler
will schedule the sub-graph on
different backend.

Loading configuration and initialization

24

Load executable sub-graph

Load neural network per sub-graph parameters

Load sub-graph DAG

Loading and initialize

Initialize forwarding queue and threads pool

Threads Management

25

Running control flow and
normal computation on

CPU and a run the highly
intensive computation on

accelerator.

Each sub-graph would
have it own working

threads pool binding with
specify CPU resource.

Scheduler

26

The non-dependent sub-
graphs can get schedule
in parallel mode and
these sub-graphs have
dependency will execute
in pipeline

Scheduler using the
dependency queue to
control the sub-graph
execution is pipeline or
parallelism.

Example Object detection

27

Pipelining aids parallel
processing of multiple
image at the same time and
improves performance

28

Performance

Performance

29

 Network Type Architecture Type

TVM-VTA Proposed Solution

Resnet18 12FPS 16FPS

Yolov3-tiny 6FPS 8FPS

P i p e l i n i n g a n d
parallelism shows ~1.3x
p e r f o r m a n c e
improvement compared
to sequential processing
in heterogenous system

Performance data on Xilinx Ultra96 board comparing our proposed solution and TVM-VTA.

30

Open-source

Open-source

31

Part of This Solution already Merged into Upstream TVM Codebase

https://github.com/apache/tvm/pull/8702

https://github.com/apache/tvm/pull/9108

32

Conclusion

33

Conclusion

! Achieved significant performance improvements and flexibility compared to existing
frameworks

! The framework is completely open-source and we hope community can contribute further
to extend it capability

! The work for sub-graph pipelining and parallelism upstream to the TVM community,
Several of our patches have been accepted and the remaining patches are planned to be
completed soon.

