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• Assume:
– Regressions run from t1 to t4
– # failures proportional to  #check-ins

• Early: Setup Design 
– Test development
– Low volume of regressions

• Development: Develop Functionality
– Bulk of checkins are for functional changes
– Relatively small number of test changes
– Focus on fast/clean check-ins
– Trade-off Bug-count v/s dev. speed

• Converge: Functionally correct RTL
– Randomized regressions to find bugs

– Explore design space maximally
– Bulk of machine/license costs

– Bulk of check-ins are for bug-fixes
– Cost of late bug-fixes are very high

Complexity of regressions in design life-cycle
The RTL regression problem

Initiate Early Stage Development Converge to Tape-out

N
o.

 o
f c

he
ck

in
s

or
 F

ai
lu

re
s

Lifecycle of Pre-Tapeout Design Activity
t1 t2 t3 t4

Avoid bugs found late

Regression Volume

Checkin Volume



44

• Our approach: Model it as a probabilistic problem 
– Probabilistic TSP is formally defined as: 
– Given 

– DUTn (the nth modified version of the DUT), 
– a test suite T, and a set of test requirements R

– Find
– a subset of tests, T′ ∈ T to test DUTn such that  T′ achieves R with probability P. 
– Ideally, T′ should contain all the test-cases in T that reveal faults in DUTn.

• Value 
– R&D: Higher Quality Checkins, Faster Development

– Gen. smaller high-quality set of tests for pre-checkin testing & validation
– DV/R&D:  Catch Regression Failures early

– Front-load failures during periodic regression
– Infrastructure: Optimize on Resources and Quality

– Achieve same or higher quality targets with less (machines, licenses)

Optimize RTL regressions across corners
RTL Regression Test Selection Problem
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• Benjamin et al. and Guzey et al. focus on functional coverage targets.
• Gal et al. focused on bug detection.
• Farkash et al. uses a probabilistic metric based on coverage

– Updated over time to rank-order files that are failure-prone. 
– File-based metrics used to optimize resources versus quality. 

• Ioannides et al. surveys coverage-directed test-selection using ML
• Guzey et al. derives reduced test-set for functional coverage

– Uses support vector machines
– Learns an estimated mapping of the input sub-space of a given set of 

tests to a subset of tests.
– represent equivalent functional coverage.

• Significant prior art in Software (Rothermel et. al and others)

• Our work and coverage-directed 

test selection techniques are 

orthogonal approaches. 

• Our approach focuses on the 

probability of a bug being found 

independent of coverage targets.

RTL Regression Test Selection Problem
Prior Art
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• Optimize RTL regressions
– Cost of infrastructure, licenses
– Time to completion
– Quality of results

• Adapt to design life-cycle
– Full ML pipeline in dynamic env.
– Online ML model training

• Minimal Total Cost of Ownership
– Lightweight Analysis
– Minimal compute/disk requirements
– Low latency

• High reliability and availability 

Overview
RTL Test Selection using ML
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• Information across time
– Timestamped Datums

• Static Data per changelist
– Author, Files changed, Time-stamp

• Linked Data from Ancillary DBs
– Bug-fixing changes
– Regression/QOR/Coverage Results
– Comments/defects from reviews

• Derived Data
– Bug-inducing author, Other Authors

• Compiler Data
– Hierarchical scope
– complexity of change
– Connectivity of change features

Core Datum – Code/Design/Test change and run data
Machine Learning Data Model
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ML System Model Architecture
Ensemble model using individual predictors

Model Mn

Model Mn-1

Model M0

Test-Suite Historical features

• Time-series clustering 
• user-defined

Test-Suite Partitioning

Global Model Mg

Meta-Model

Core ML model pipeline 

• One global model across all data
• Partition-level Model

• Stacked ensemble per partition
• Meta-learner to decide which model to use on the fly
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• Recall/Precision Comparison
– No single winner

Example on a real-world design
Individual ML algorithms are not sufficient

Test Efficiency (recall) Comparison Precision Comparison

GBM LR NB NN RF
Ada-boost 0.15 0.11 0.19 0.09 0.2
GBM 0.62 0.52 0.55 0.76
LR 0.6 0.72 0.5
NB 0.46 0.45
NN 0.44

• Model performance Comparison
– Compare model estimated failure prob.
– Order on estimated prob. of failure

– Tversky index
– Measures set similarity
– Use on Ordered sets from models
– See very different estimates 



10

ML System Data Flow: Service Oriented Architecture
Distributed test/design data collection, transformation, and feature generation
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• Train Model 
– On n days of data (t2)

• Foreach changelist after training
– Tests actually run for current CL
– Predict tests to be run for current CL
– Compare predicted v/s actual

• Incremental training after nth day
– After predictions for n+1th day
– Combine changes in day
– Use as n+1th training data-point
– Serves as model for (n+2)th day

• User defined minimum QOR
– User uses ML recommended tests

• Periodic Data Refresh (tk)
– Based on model metrics

Online training and prediction
Model Training Lifecycle
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Results
Prediction efficiency and test reduction results

• Regressions for all designs have a mix of randomized and directed tests
• Achieved > 90% median recall
• Reduced the avg no. of tests to be run by 10x to 20% 
• Mean APFD scores shown demonstrates that ITS generates effective relative failure probabilities.

• Assume TFi is first test case in ordered T, revealing fault i, then AFPD = 1 − !"!#!""# …#!"%
&%

+ '
(&

Design Configs Training # Regressions Mean Recall Median Recall # Tests Mean Predicted 
Tests

APFD Reduction

D1 1 52 40 93.82% 98.01% 1311 843 70.93 35.69%

D2 13 36 62 91.88% 90.95% 1070 420 86.73 60.73%

D3 1 50 7 98.02% 99.56% 121207 9195 96.09 92.41%

D4 18 115 33 81.01% 100.00% 92 36 50.04 18.89%

D5 1 58 14 97.44% 100.00% 37 19 76.79 48.76%
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• Data for 158 changelists spread across 46 days, Total number of unique tests = 12107
• Recall: Mean = 88.14 %, Median = 95.36 %
• Median Size of predicted test-list = 9749. Reduction of ~10x.
• >99% of failing changelists captured with at least one true prediction

Model trained with 21 days of data. Predict on remaining 72 changelists over ~35 days
Experimental Results (sample data on D3)
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Conclusion
Discussion and future work

• Machine Learning test-selection in RTL functional verification flows is a promising approach. 
• Experimental results support the utility of the method

• Across distinctive design styles and test methodologies
• High accuracy of detecting change-based failures 
• 35% to 10x reduction in regression size

• Limitations and Future work:
• Variance in quality of results (QOR): 

• Dependent on the quality of data. 
• Can lead to unpredictable variations in the QOR that’s hard to resolve automatically.

• Reduced QOR for constrained random tests
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