

RTL Regression Test Selection using Machine Learning ASP-DAC 2022

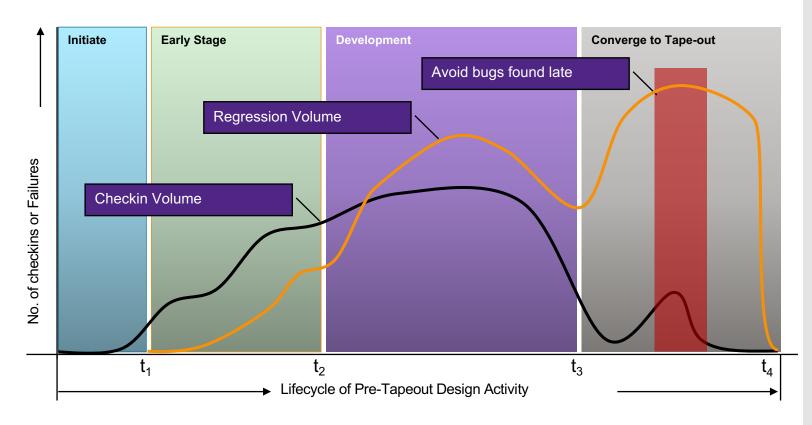
Ganapathy Parthasarathy*, Aabid Rushdi, Parivesh Choudhary, Saurav Nanda Malan Evans, Hansika Gunasekara, and Sridhar Rajakumar

Agenda

- Problem Statement
- Background Work
- Overview
- Architecture
 - Data Model
 - ML Model Architecture
 - Why Ensemble?
- Experimental Results
- Conclusion

The RTL regression problem

Complexity of regressions in design life-cycle



Assume:

- Regressions run from t1 to t4
- # failures proportional to #check-ins

• Early: Setup Design

- Test development
- Low volume of regressions

Development: Develop Functionality

- Bulk of checkins are for functional changes
- Relatively small number of test changes
- Focus on fast/clean check-ins
- Trade-off Bug-count v/s dev. speed
- Converge: Functionally correct RTL
 - Randomized regressions to find bugs
 - Explore design space maximally
 - Bulk of machine/license costs
 - Bulk of check-ins are for bug-fixes
 - Cost of late bug-fixes are very high

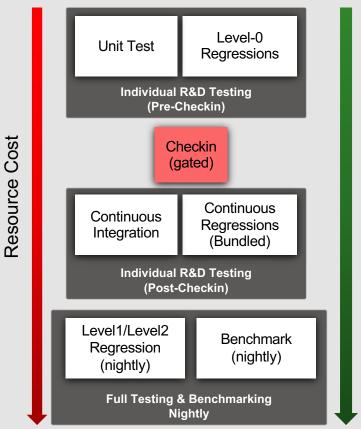
RTL Regression Test Selection Problem

Optimize RTL regressions across corners

- Our approach: Model it as a probabilistic problem
 - Probabilistic TSP is formally defined as:
 - Given
 - DUT_n (the nth modified version of the DUT),
 - a test suite T, and a set of test requirements R
 - Find
 - − a subset of tests, $T' \in T$ to test DUT_n such that T' achieves R with probability P.
 - Ideally, T' should contain all the test-cases in T that reveal faults in DUT_n .

• Value

- R&D: Higher Quality Checkins, Faster Development
 - Gen. smaller high-quality set of tests for pre-checkin testing & validation
- DV/R&D: Catch Regression Failures early
 - Front-load failures during periodic regression
- Infrastructure: Optimize on Resources and Quality
 - Achieve same or higher quality targets with less (machines, licenses)



Prior Art

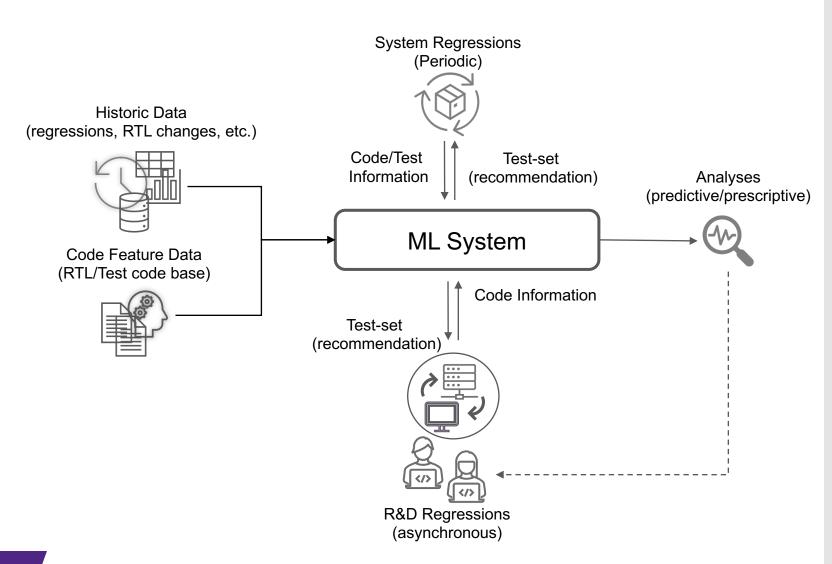
RTL Regression Test Selection Problem

- Benjamin et al. and Guzey et al. focus on functional coverage targets.
- Gal et al. focused on bug detection.
- Farkash et al. uses a probabilistic metric based on coverage
 - Updated over time to rank-order files that are failure-prone.
 - File-based metrics used to optimize resources versus quality.
- Ioannides et al. surveys coverage-directed test-selection using ML
- Guzey et al. derives reduced test-set for functional coverage
 - Uses support vector machines
 - Learns an estimated mapping of the input sub-space of a given set of tests to a subset of tests.
 - represent equivalent functional coverage.
- Significant prior art in Software (Rothermel et. al and others)

- Our work and coverage-directed test selection techniques are orthogonal approaches.
- Our approach focuses on the probability of a bug being found independent of coverage targets.

RTL Test Selection using ML

Overview



Optimize RTL regressions

- Cost of infrastructure, licenses
- Time to completion
- Quality of results

Adapt to design life-cycle

- Full ML pipeline in dynamic env.
- Online ML model training

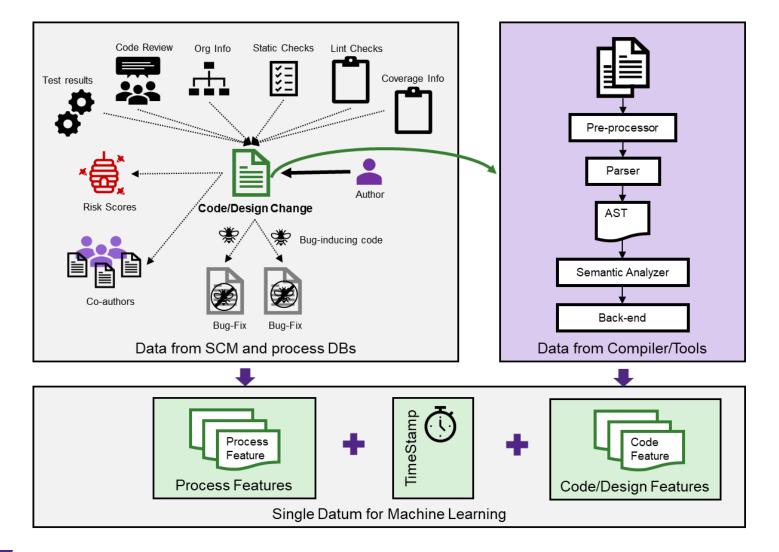
Minimal Total Cost of Ownership

- Lightweight Analysis
- Minimal compute/disk requirements
- Low latency

High reliability and availability

Machine Learning Data Model

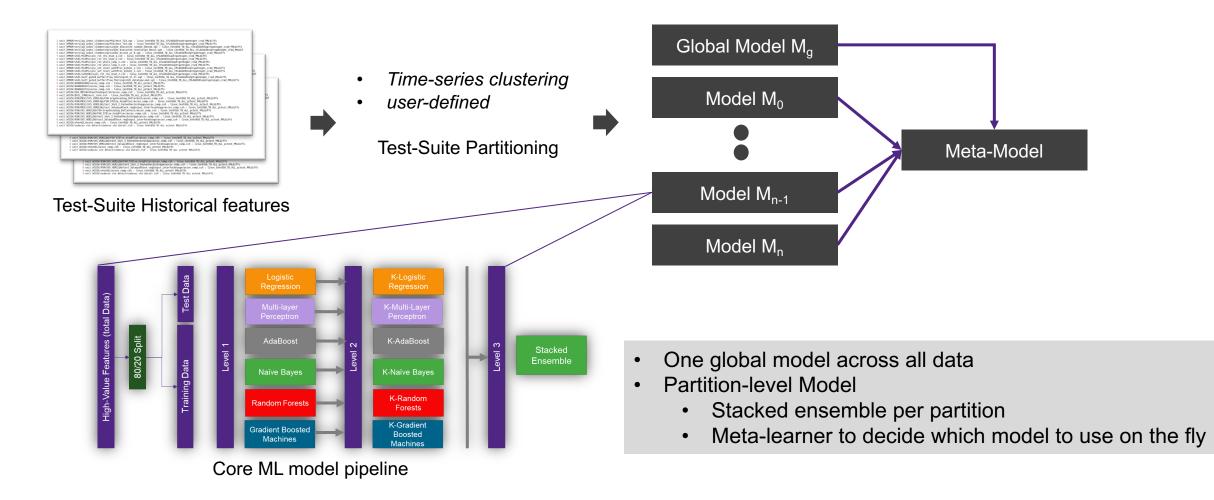
Core Datum – Code/Design/Test change and run data



- Information across time
 - Timestamped Datums
- Static Data per changelist
 - Author, Files changed, Time-stamp
- Linked Data from Ancillary DBs
 - Bug-fixing changes
 - Regression/QOR/Coverage Results
 - Comments/defects from reviews
- Derived Data
 - Bug-inducing author, Other Authors
- Compiler Data
 - Hierarchical scope
 - complexity of change
 - Connectivity of change features

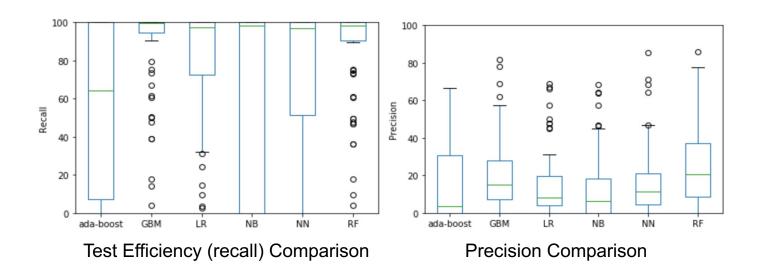
ML System Model Architecture

Ensemble model using individual predictors



Individual ML algorithms are not sufficient

Example on a real-world design



	GBM	LR	NB	NN	RF	
Ada-boost	0.15	0.11	0.19	0.09	0.2	
GBM		0.62	0.52	0.55	0.76	
LR			0.6	0.72	0.5	
NB				0.46	0.45	
NN					0.44	

Recall/Precision Comparison

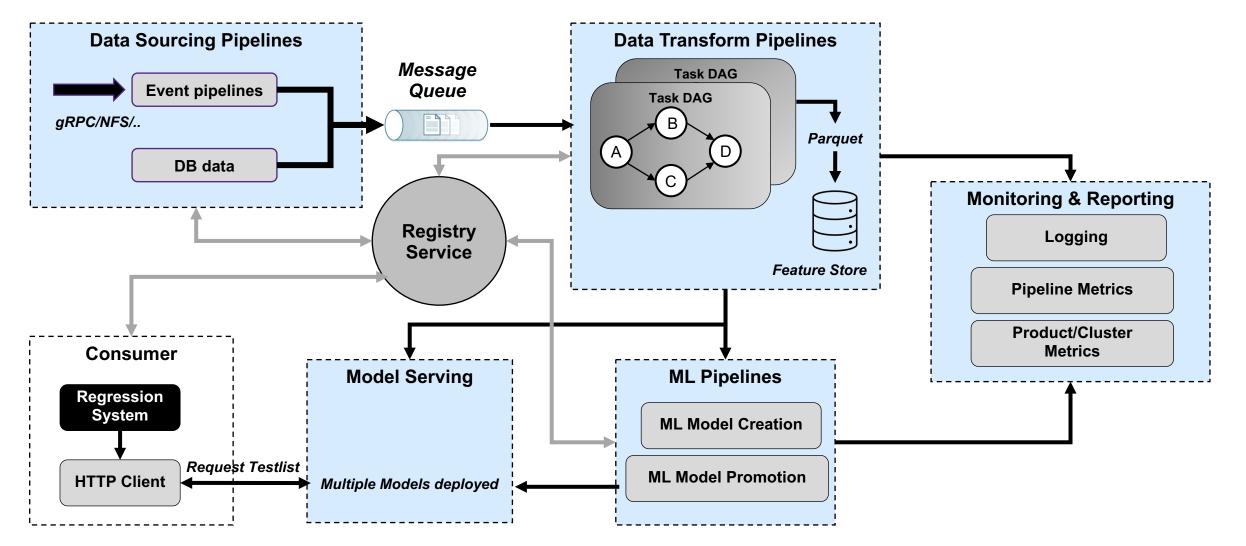
- No single winner

Model performance Comparison

- Compare model estimated failure prob.
- Order on estimated prob. of failure
- Tversky index
 - Measures set similarity
 - Use on Ordered sets from models
 - See very different estimates

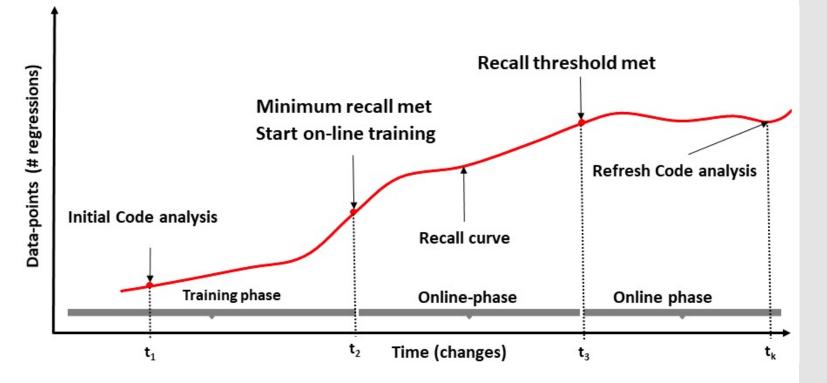
ML System Data Flow: Service Oriented Architecture

Distributed test/design data collection, transformation, and feature generation



Model Training Lifecycle

Online training and prediction



Train Model

- On n days of data (t₂)
- Foreach changelist after training
 - Tests actually run for current CL
 - Predict tests to be run for current CL
 - Compare predicted v/s actual
- Incremental training after nth day
 - After predictions for n+1th day
 - Combine changes in day
 - Use as n+1th training data-point
 - Serves as model for (n+2)th day
- User defined minimum QOR
 - User uses ML recommended tests
- Periodic Data Refresh (t_k)
 - Based on model metrics

11

Results

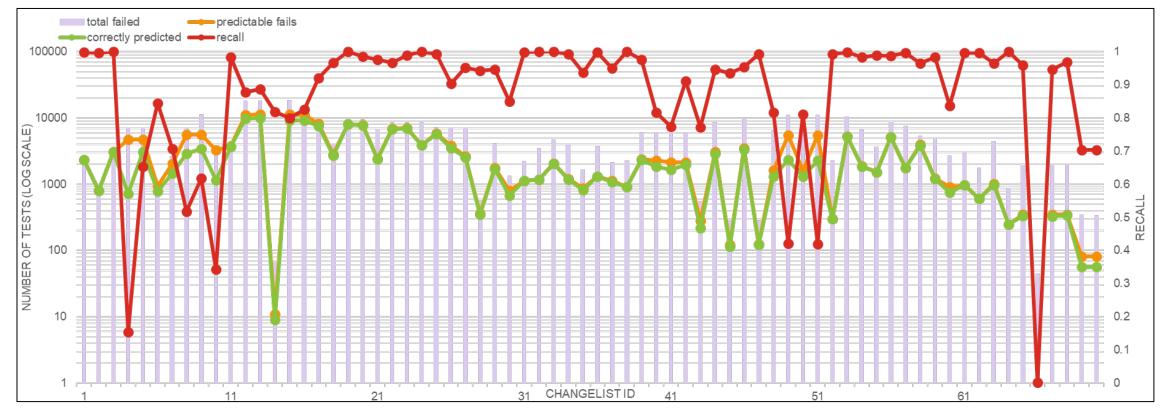
Prediction efficiency and test reduction results

Design	Configs	Training	# Regressions	Mean Recall	Median Recall	# Tests	Mean Predicted Tests	APFD	Reduction
D1	1	52	40	93.82%	98.01%	1311	843	70.93	35.69%
D2	13	36	62	91.88%	90.95%	1070	420	86.73	60.73%
D3	1	50	7	98.02%	99.56%	121207	9195	96.09	92.41%
D4	18	115	33	81.01%	100.00%	92	36	50.04	18.89%
D5	1	58	14	97.44%	100.00%	37	19	76.79	48.76%

- Regressions for all designs have a mix of randomized and directed tests
- Achieved > 90% median recall
- Reduced the avg no. of tests to be run by 10x to 20%
- Mean APFD scores shown demonstrates that ITS generates effective relative failure probabilities.
 - Assume TF_i is first test case in ordered T, revealing fault i, then $AFPD = 1 \frac{TF_1 + TF_2 + ... + TFm}{mm} + \frac{1}{2m}$

Experimental Results (sample data on D3)

Model trained with 21 days of data. Predict on remaining 72 changelists over ~35 days



- Data for 158 changelists spread across 46 days, Total number of unique tests = 12107
- Recall: Mean = 88.14 %, Median = 95.36 %
- Median Size of predicted test-list = 9749. Reduction of ~10x.
- >99% of failing changelists captured with at least one true prediction

Conclusion

Discussion and future work

- Machine Learning test-selection in RTL functional verification flows is a promising approach.
- Experimental results support the utility of the method
 - Across distinctive design styles and test methodologies
 - High accuracy of detecting change-based failures
 - 35% to 10x reduction in regression size
- Limitations and Future work:
 - Variance in quality of results (QOR):
 - Dependent on the quality of data.
 - Can lead to unpredictable variations in the QOR that's hard to resolve automatically.
 - Reduced QOR for constrained random tests

Thank You