LFSR Reseeding for Stochastic Circuit Repairing and Minimization

Chen Wang and Weikang Qian

University of Michigan-SJTU Joint Institute, Shanghai Jiao Tong University

- Background and Motivations
- Preliminaries
- Proposed Methods
 - Repair Faulty SC Circuits by LFSR Reseeding
 - Minimize SC Circuit by Constant Replacement with LFSR Reseeding
- Experimental Results
- Conclusions

- Background and Motivations
- Preliminaries
- Proposed Methods
 - Repair Faulty SC Circuits by LFSR Reseeding
 - Minimize SC Circuit by Constant Replacement with LFSR Reseeding
- Experimental Results
- Conclusions

Introduction to Stochastic Computing (SC)

- Stochastic computing (SC) is a re-emerging computing paradigm.
 - Early proposed in 1960s.
 - Recently applied in image processing and neural networks.

- SC computes on bit streams rather than radix-2 numbers.
- Value of a bit stream: probability of 1 in it.
- SC realizes complicated computation with simple circuit.

Motivations of This Study

• SC circuit is currently implemented by CMOS technology, and it can still be faulty.

• Question: can we repair the faulty SC circuit?

Motivations of This Study

 Question: can we further minimize SC circuit during design time?

Observation and Contributions

• We make an important observation

The computation error of the faulty LFSR-based SC circuit can be reduced by LFSR reseeding without any hardware modification.

- Our contributions
- Repair the faulty SC circuit by LFSR reseeding.
- Minimize the SC circuit by constant replacement with accuracy recovery through LFSR reseeding.

- Background and Motivations
- Preliminaries
- Proposed Methods
 - Repair Faulty SC Circuits by LFSR Reseeding
 - Minimize SC Circuit by Constant Replacement with LFSR Reseeding
- Experimental Results
- Conclusions

Preliminaries: LFSR Reseeding

 An LFSR is a basic primitive for both digital circuit design and test.

- An *n*-bit maximum-length LFSR provides an output sequence with a period of $2^n 1$.
- LFSR reseeding

• Each LFSR has extra ports to load a given seed.

Preliminaries: Stuck-At Fault and Constant Replacement

- Stuck-at fault
 - Caused by manufacturing defects
 - A signal fixed to logic 0 or 1
 - Usually causes output error of the circuit
- Constant replacement
 - Replace an internal signal by a constant logic 0 or 1.
 - Effect is similar to a stuck-at fault, but deliberately applied at design time.
 - An approach used in approximate computing to simplify circuit.
 - Also leads to output error.

Preliminaries: Architecture of the SC Circuit Applicable for this Study

 A general architecture of the SC circuit considered in this study

• SC circuit studied here (proposed by Zhao et. al., 2015)

- Background and Motivations
- Preliminaries
- Proposed Methods
 - Repair Faulty SC Circuits by LFSR Reseeding
 - Minimize SC Circuit by Constant Replacement with LFSR Reseeding
- Experimental Results
- Conclusions

- Background and Motivations
- Preliminaries
- Proposed Methods
 - Repair Faulty SC Circuits by LFSR Reseeding
 - Minimize SC Circuit by Constant Replacement with LFSR Reseeding
- Experimental Results
- Conclusions

SC Circuit Repair by LFSR Reseeding Basic Idea

- e^* : reference output error (ROE), minimum output error of fault-free circuit
- v^* : reference seed vector (RSV)
- Basically, obtained by exhaustive search over all seed vectors for the fault-free SC circuit.

Stage 1: Offline Characterization

• Error bound is not given. Enumerate all possible faults.

 v_r decisive seed vector (DSV)

 e_r output error of C_f under DSV v_r

Decisive seed vector: in set V
(1) leads to e ≤ e*
(2) gives minimum error if all e > e*

Stage 2: Online Test and Repair

• The user-defined error bound e_b is now given.

- Background and Motivations
- Preliminaries
- Proposed Methods
 - Repair Faulty SC Circuits by LFSR Reseeding
 - Minimize SC Circuit by Constant Replacement with LFSR Reseeding
- Experimental Results
- Conclusions

Minimize SC Circuit by Constant Replacement with LFSR Reseeding

- For LFSR-based SC circuit, probability conversion circuit (PCC) consumes a large portion of hardware cost.
- Area-delay product (ADP) is used to measure the hardware cost.

Basic Idea

- Background and Motivations
- Preliminaries
- Proposed Methods
 - Repair Faulty SC Circuits by LFSR Reseeding
 - Minimize SC Circuit by Constant Replacement with LFSR Reseeding
- Experimental Results
- Conclusions

Experiment 1: Unshared-LFSR Design

• Benchmarks used in this experiment.

ID	(n,m)	function	ID	(n,m)	function	ID	(n,m)	function
1	(4,4)	$\cos(x)$	5	(6,6)	$\cos(x)$	9	(6,6)	$\tanh(x)$
2	(4,4)	$\exp(-x)$	6	(6,6)	$\exp(-x)$	10	(6,6)	$\exp(-2x)$
3	(4,4)	$\tanh(4x)$	7	(6,6)	$\tanh(4x)$	11	(6,6)	$1/(1 + \exp(-x))$
4	(4,4)	$x^{2.2}$	8	(6,6)	$x^{2.2}$	12	(6,6)	$0.5\cos(\pi x) + 0.5$

• SC circuit architecture. Independent LFSRs are used.

21

Experiment 1: Unshared-LFSR Design (1) Faulty SC Circuit Repair

• Repairing rates over different error bounds.

repairing rate (%) = $\frac{\text{#repaired faults}}{\text{#faults violating } e_b \text{ before reseeding}} \times 100\%$

The larger, the better!

BM		WC	AE bo	und		MAE bound						
ID	0.02	0.04	0.06	0.08	0.1	0.02	0.04	0.06	0.08	0.1		
1	15.5	15.3	12.7	5.8	9	18.8	13.6	8.4	8.3	13.6		
2	-	15	18.4	15.8	7.2	—	13.6	22.3	19.2	20.7		
3	0	3.5	8.2	4.8	2.7	0	3.8	8.9	5.3	3		
4	32	20.1	5.3	8.6	9.3	35.6	27.1	9.7	9.4	8.8		
5	44.2	28.8	8.3	29.9	39.3	11.2	20.8	37.6	32.4	14.8		
6	19.4	10.6	24.3	18.3	17.3	14.6	21.5	13.5	4.4	8.1		
7	28.7	32.4	51.1	40.9	28.1	40.2	20.2	7.1	12	11.5		
8	37.9	40.6	39.8	30.4	42.3	33.5	28.8	33.3	20	35.1		
9	31.1	30	34	31.8	26.7	25.4	32.4	25.9	26.6	42.3		
10	26.7	11.5	13.2	17.8	25.3	26.5	27.4	20.2	10.6	2.3		
11	24.8	25	8.4	6.4	10.5	21.6	23.9	33.7	27.3	32.1		
12	38.2	23.7	27.9	25.7	9.1	25.4	24.5	9.1	46.1	37.7		

WCAE: worst-case absolute error

MAE: mean absolute error

Repairing rates are relatively large! Repairing rates > 30%

• For WCAE, 585× average cost reduction for online repair over a straightforward method (reseeding over 10k random seed vectors).

Experiment 1: Unshared-LFSR Design (2) SC Circuit Minimization

Minimize SC circuit by constant replacement with LFSR reseeding (1k random seeds). $e_b = \alpha \cdot e_{ref}$ relative error bound $\alpha = 1.5$

	ΒM	SC circuit	WCAE	minimum	#8-bit	area	delay	total ADP	
	ID	under test bound		WCAE	LFSR	(μm^2)	(ps)	(improvement)	
Ì		fault-free	-	8.84E-3	4	337.3	408.8	137892	
	1	$\alpha = 1.1$	9.73E-3	8.84E-3	4	337.3	408.8	137892 (0%)	
		$\alpha = 1.5$	1.33E-2	1.26E-2	2	195	335.3	65367 (52.6%)	
Ī		fault-free	-	2.95E-2	4	331.4	415.2	137597	
	2	$\alpha = 1.1$	3.24E-2	2.92E-2	2	192.3	331.3	63721 (53.7%)	
		$\alpha = 1.5$	4.42E-2	4.16E-2	2	186.7	316.4	59086 (57.1%)	
Ī	-	fault-free	-	1.84E-2	4	326.4	399.6	130409	
	3	$\alpha = 1.1$	2.02E-2	1.84E-2	4	326.4	399.6	130409 (0%)	
		$\alpha = 1.5$	2.75E-2	1.84E-2	4	326.4	399.6	130409 (0%)	
t	4	fault-free	-	7.99E-3	4	- 337	394.7	133033	
		$\alpha = 1.1$	8.78E-3	7.99E-3	4	337	394.7	133033 (0%)	
		$\alpha = 1.5$	1.20E-2	1.15E-2	3	267	374.6	100046 (24.8%)	
Ī		fault-free	-	7.89E-3	6	492.6	458.1	225666	
	5	$\alpha = 1.1$	8.68E-3	7.89E-3	6	492.6	458.1	225666 (0%)	000
		$\alpha = 1.5$	1.18E-2	1.10E-2	2	213.3	353.1	75319.7 (66.6%)	> 66%
İ		fault-free	-	7.54E-3	6	492.9	468.2	230778	
	6	$\alpha = 1.1$	8.29E-3	7.54E-3	6	492.9	468.2	230778 (0%)	
		$\alpha = 1.5$	1.13E-2	1.06E-2	2	216.3	359.1	77658 (66.3%)	> 66%
Ī	_	fault-free	-	1.56E-2	6	508.3	443.5	225437	
	7	$\alpha = 1.1$	1.72E-2	1.72E-2	5	383.8	381.5	146439 (35%)	
		$\alpha = 1.5$	2.34E-2	2.15E-2	5	365.2	363.9	132907 (41%)	
Ţ		fault-free	-	9.60E-3	6	482.3	535.8	258368	
	8	$\alpha = 1.1$	1.06E-2	9.60E-3	6	482.3	535.8	258368 (0%)	
		$\alpha = 1.5$	1.44E-2	1.42E-2	6	439.7	436.6	191979 (25.7%)	

Experiment 2: Shared-LFSR Design

- Partially-shared design vs. fully-shared design
 - 1 more LFSR is added
 - Increased area is further reduced by PCC minimization.
 - LFSR reseeding space is enlarged, leads to lower output error # LFSR seed vector choice:
 - fully-shared: 15
 - partially-shared: 3825

24

Experiment 2: Shared-LFSR Design

• For partially-shared design, better repairing rates over different WCAE bounds.

	BM		WCAE bound								
	ID	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20
fully	1	-	7.32	3.31	3.42	4.17	4.35	0	0	0	1.69
shared	2	_	7.69	4.17	0.69	2.11	2.22	0	0	0.76	0
	4	_	4.52	2.25	0	4.88	0	0.67	0.67	2.03	10.64
partially	1	25.55	10.19	10.96	7.44	5.08	20.35	6.32	0	0	2.27
shared	2	_	13.5	6.63	13.64	15.65	13.53	5.04	4.27	4.35	5.26
	4	14.35	8.99	8.44	5.71	6.57	1.54	2.5	5	17.24	18.92

• Compared to fully-shared, partially-shared has smaller error, larger ADP, but both less than the original case.

Experiment 2: Shared-LFSR Design

• Partially-shared design: a new tradeoff between area and error.

- Background and Motivations
- Preliminaries
- Proposed Methods
 - Repair Faulty SC Circuits by LFSR Reseeding
 - Minimize SC Circuit by Constant Replacement with LFSR Reseeding
- Experimental Results
- Conclusions

Conclusions

- We observe the output error of the faulty LFSR-based SC circuit can be reduced by LFSR reseeding.
- An efficient LFSR reseeding method is proposed to repair the faulty SC circuit.
- At design time, we minimize SC circuit by deliberate constant replacement, followed by accuracy recovery through LFSR reseeding.
- Experiment indicates a new way to design the low-cost highaccuracy partially-shared LFSR-based SC circuit.

THANK YOU! Q and A