BSC: Block-based Stochastic Computing to Enable Accurate and Efficient TinyML

Yuhong Song¹ Edwin Hsing-Mean Sha^{1,*} Qingfeng Zhuge¹ Rui Xu¹ Yongzhuo Zhang¹ Bingzhe Li² Lei Yang³

¹ East China Normal University ² Oklahoma State University ³ University of New Mexico

* Edwin Hsing-Mean Sha is the corresponding author (edwinsha@cs.ecnu.edu.cn)

Application Needs: There are increasing demands on the deployment of deep neural networks (DNNs) on tiny devices.

Medical Treatment

Surveillance Cameras

Smart Driving

Application Needs: There are increasing demands on the deployment of deep neural networks (DNNs) on tiny devices.

Medical Treatment

Surveillance Cameras

Smart Driving

Hardware Constraint: the energy supply of tiny devices is extremely limited, which requires low-power execution for DNNs.

Stochastic Computing (SC) stands out to reduce power consumption by simplifying computing circuits because of the special data expression.

 $\frac{4}{2} - 1 = 0.0$

Stochastic Computing (SC) stands out to reduce power consumption by simplifying computing circuits because of the special data expression.

Stochastic Computing (SC) stands out to reduce power consumption by simplifying computing circuits because of the special data expression.

SC greatly decreases the hardware cost in terms of area and power. However, it suffers huge accuracy loss.

Low Data Precision leads to inaccurate data representation

deterministic $SC^{[1]} \longrightarrow 2^{m \times \log_2 n}$ -bit bitstreams to process m n-bits inputs

[1] W. Qian, X. Li, M. D. Riedel, K. Bazargan, et al., "An architecture for fault-tolerant computation with stochastic logic," IEEE transactions on computers (TC), vol. 60, no. 1, pp. 93–105, 2010.

Low Data Precision leads to inaccurate data representation

bit length4 bits16 bits64 bits256 bits1024 bits \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow data precision0.1250.06250.0156250.003906250.0009765625

deterministic $SC^{[1]} \longrightarrow 2^{m \times \log_2 n}$ -bit bitstreams to process m n-bits inputs

High Data Precision Requires Long Computing Latency

[1] W. Qian, X. Li, M. D. Riedel, K. Bazargan, et al., "An architecture for fault-tolerant computation with stochastic logic," IEEE transactions on computers (TC), vol. 60, no. 1, pp. 93–105, 2010.

Low Data Precision leads to inaccurate data representation

bit length 4 bits 16 bits 64 bits 256 bits 1024 bits 0.0625 0.015625 0.00390625 0.0009765625 data precision 0.125

deterministic SC^[1] $\longrightarrow 2^{m \times \log_2 n}$ -bit bitstreams to process m n-bits inputs

High Data Precision Requires Long Computing Latency

To shorten latency, we propose a block-based architecture, namely **BSC**, which divides inputs into blocks and executes blocks in parallel.

[1] W. Qian, X. Li, M. D. Riedel, K. Bazargan, et al., "An architecture for fault-tolerant computation with stochastic logic," IEEE transactions on computers (TC), vol. 60, no. 1, pp. 93–105, 2010. 2021-12-12

Arithmetic circuits affect the accuracy of computation

• Basic XNOR Multiplier and OR-tree Adder are Trapped in **Correlation Problem**.

[2] P. Li, D. J. Lilja, W. Qian, K. Bazargan, et al., "Computation on stochastic bit streams digital image processing case studies," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 449–462, 2013.

Arithmetic circuits affect the accuracy of computation

• Basic XNOR Multiplier and OR-tree Adder are Trapped in **Correlation Problem**.

'Sign-magnitude'^[3] format is proposed and utilizes AND as the multiplier.

[2] P. Li, D. J. Lilja, W. Qian, K. Bazargan, et al., "Computation on stochastic bit streams digital image processing case studies," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 449–462, 2013.

[3] A. Zhakatayev, S. Lee, H. Sim, and J. Lee, "Sign-magnitude sc: getting 10x accuracy for free in stochastic computing for deep neural networks," in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

Arithmetic circuits affect the accuracy of computation

- Basic XNOR Multiplier and OR-tree Adder are Trapped in **Correlation Problem**.
- Separated Adder Suffers from Severe **Overflow Problem**.

[4] B. Li, Y. Qin, B. Yuan, and D. J. Lilja, "Neural network classifiers using stochastic computing with a hardware-oriented approximate activation function," in 2017 IEEE International Conference on Computer Design (ICCD), 2017.

Arithmetic circuits affect the accuracy of computation

- Basic XNOR Multiplier and OR-tree Adder are Trapped in **Correlation Problem**.
- Separated Adder Suffers from Severe **Overflow Problem**.

[4] B. Li, Y. Qin, B. Yuan, and D. J. Lilja, "Neural network classifiers using stochastic computing with a hardware-oriented approximate activation function," in 2017 IEEE International Conference on Computer Design (ICCD), 2017.

Yuhong Song @ ECNU

BSC framework

• Inputs are divided into **blocks** and execute them in parallel to reduce latency.

BSC framework

- Inputs are divided into **blocks** and execute them in parallel to reduce latency.
- **Optimized arithmetic circuit** inside blocks and **output revision scheme** between blocks are proposed to improve inference accuracy.

BSC framework

- Inputs are divided into **blocks** and execute them in parallel to reduce latency.
- **Optimized arithmetic circuit** inside blocks and **output revision scheme** between blocks are proposed to improve inference accuracy.
- A global optimization approach is devised to determine the number of blocks for better accuracy, latency, and power trade-off

Accumulator-based adder can alleviate correlation problem in XNOR+OR circuit and overflow problems in seperated adder.

(1)

① Input in parallel

Accumulator-based adder can alleviate correlation problem in XNOR+OR circuit and overflow problems in seperated adder.

(1) Input in parallel

Accumulator-based adder can alleviate correlation problem in XNOR+OR circuit and overflow problems in seperated adder.

(1) Input in parallel

- **(2)** Accumulate '1's
- **③** Determine the output

(1) Input

③ Output the correct result

Lost '1's in result

Redundant '1's in result

Output for each block using accumulator-based adder

Compare the accurate number of 1s and the real number of 1s in outputs Output revision scheme induces inaccuracy among blocks.

DAGE SIGN NUTOMATION CONFERENCE

DAGE SIGN UNITED AND ALL AND A

Heuristic Strategy for Block Division

• On the accuracy side, the number of blocks impacts the accuracy of proposed intra-block adder.

$$Probability = \begin{cases} P(p \ge q) & p \ge q\\ 1 - P(p \ge q) & p < q \end{cases}$$

Heuristic Strategy for Block Division

• On the accuracy side, the number of blocks impacts the accuracy of proposed intra-block adder.

$$Probability = \begin{cases} P(p \ge q) & p \ge q\\ 1 - P(p \ge q) & p < q \end{cases}$$

$$P(p \ge q) = \sum_{i=0}^{d} [C_d^i p^i (1-p)^{d-i} \sum_{j=0}^{i} C_d^j q^j (1-q)^{d-j}]$$

Heuristic Strategy for Block Division

• On the accuracy side, the number of blocks impacts the accuracy of proposed intra-block adder.

$$Probability = \begin{cases} P(p \ge q) & p \ge q\\ 1 - P(p \ge q) & p < q \end{cases}$$

$$P(p \ge q) = \sum_{i=0}^{d} [C_d^i p^i (1-p)^{d-i} \sum_{j=0}^{i} C_d^j q^j (1-q)^{d-j}]$$

• The hardware power consumption become higher because of the parallel execution. We set the hardware power consumption of BSC must be lower than floating point.

MAE Evaluation of Adders

- With the number of inputs increasing, mean absolute error (MAE) shows an upward trend among adders because of the overflow problem.
- Our proposed RBLKADD is the best because of intra-block ACCADD and inter-block OUR scheme.

MAE Evaluation of General Matrix Multiplication (GEMM)

- XNOR-OR and AND-SEP circuits suffer from severe correlation and overflow problems.
- Our proposed BSC obtains the lowest MAE.

The Number of Block Exploration

- Through exhaustive search, the average correct probability becomes greater than θ =90% when the number of block is 12.
- Guarantee the addition accuracy inside every block, reduce the cost of OUR scheme and keep output relatively uniform.

The Number of Block Exploration

- Compared with BSC*, our BSC can improve the accuracy without any additional cycles.
- BSC achieves over $6 \times$ power saving than FP circuit.

Design		Cycles	Stalls	MAE	Power (W)
1/64	Ours BSC*	130	64	0.314 0.325	2.17 2.17
2/32	Ours BSC*	98	32	0.362 0.390	3.35 3.22
4/16	Ours BSC*	82	16	0.305 0.361	5.74 5.35
8/8	Ours BSC*	74	8	0.346 0.442	10.86 9.96
16/4	Ours BSC*	70	4	0.368 0.519	21.02 19.09
32/2	Ours BSC*	68	2	0.332 0.533	41.31 37.31
64/1	Ours BSC*	67	1	0.352 0.562	81.02 72.90

Evaluation of Latency

- BSC produces a little higher cycles and pipeline stalls than first 3 circuits.
- BSC achieves $3.6 \times , 3.1 \times$ and $1.2 \times$ accuracy improvement than them.
- BSC saves lots of cycles because of parallel computing than AND-ACC.

Design	MAE	Cycles	Stalls	
XNOR-OR	1.097	65	0	
AND-SEP	0.937	65	0	
uGEMM	0.362	65	0	
AND-ACC	0.315	130	64	
BSC*	0.361	82	16	
Ours	0.305	82	16	

MLP Implementation

- 3-layers MLP with 32 and 64 hidden neurons.
- Methods are evaluated on the MNIST dataset.
- There is only 0.7% accuracy gap compared with FP.

Design	FP	XNOR-OR	AND-SEP	uGEMM	BSC*	Ours
Accuracy	96.1%	10.0%	21.7%	85.1%	93.4%	95.4%
Acc.loss	-	86.1%	74.4%	11.0%	2.7%	0.7%

- In order to reduce the computing **latency**, BSC divides inputs into **blocks**, then they are executed in parallel.
- Aim at improving the accuracy of SC arithmetic circuits, we propose a novel intra-block accumulator-based adder and inter-block output revision scheme.
- Finally, we propose a heuristic strategy to determine the number of block, which takes accuracy, latency and power consumption into consideration.
- Results show that our method achieves over **10% higher accuracy** than existing methods, and saves over **6 × power consumption**.

BSC: Block-based Stochastic Computing to Enable Accurate and Efficient TinyML

If any questions, please contact us! Edwin Hsing-Mean Sha edwinsh Yuhong Song yhsong

edwinsha@cs.ecnu.edu.cn yhsong@stu.ecnu.edu.cn Thank you! Questions?

