4C-3: Streaming Accuracy: Characterizing Early Termination in Stochastic Computing

ASP-DAC 2022

Hsuan (Julie) Hsiao¹, Joshua San Miguel², Jason Anderson¹ ¹University of Toronto, ²University of Wisconsin-Madison

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

Executive Summary

Problem:

• Early termination is important for stochastic computing, but current methods for characterizing early termination have fundamental limitations

This work:

- We propose streaming accuracy, a metric for how good a bitstream is for early termination
- We introduce the concept of a streaming-accurate bitstream, which achieves the lowest possible error at all partial bitstream lengths
- We propose a design for a bitstream generator that generates streamingaccurate bitstreams

Stochastic Computing (SC)

- Approximate computing paradigm
- Values are represented by the probability that a bit is set (e.g. fraction of 1s in a bitstream)
- Very small compute units
 - Example: multiplication \rightarrow AND gate

- Potential for low power/area hardware
 - Example: image processing, LDPC decoding, neural networks

Early Termination in SC

• Value of a bitstream gets progressively more accurate/precise

- Terminate computation early if result is good enough
- Trade off latency to provide similar accuracy as binary encoding
 - Scales exponentially
- Early termination enhances the feasibility of SC circuits
 - Accuracy-energy tradeoff

Important to be able to measure early termination

- Progressive Precision [1]
 - A bitstream is k-PP if the bit error of its initial partial bitstream of length 2ⁱ is at most k for all i

- Progressive Precision [1]
 - A bitstream is k-PP if the bit error of its initial partial bitstream of length 2ⁱ is at most k for all i

0111 1111 1111 0000 =
$$\frac{11}{16}$$
 = 0.6875 desired = $\frac{10}{16}$ = 0.625

- Progressive Precision [1]
 - A bitstream is k-PP if the bit error of its initial partial bitstream of length 2ⁱ is at most k for all i

$$\boxed{01111111111110000} = \frac{11}{16} = 0.6875 \qquad \text{desired} = \frac{10}{16} = 0.625$$

$$2 \times \left| \frac{1}{2} - \frac{10}{16} \right| = 0.25 \quad 4 \times \left| \frac{3}{4} - \frac{10}{16} \right| = 0.5 \quad 8 \times \left| \frac{7}{8} - \frac{10}{16} \right| = 2 \quad 16 \times \left| \frac{11}{16} - \frac{10}{16} \right| = 1 \quad \textbf{\Rightarrow} \text{ bitstream is } 2\text{-PP}$$

- Progressive Precision [1]
 - A bitstream is k-PP if the bit error of its initial partial bitstream of length 2ⁱ is at most k for all i

$$\boxed{01111111111110000} = \frac{11}{16} = 0.6875 \qquad \text{desired} = \frac{10}{16} = 0.625$$

$$2 \times \left| \frac{1}{2} - \frac{10}{16} \right| = 0.25 \quad 4 \times \left| \frac{3}{4} - \frac{10}{16} \right| = 0.5 \quad 8 \times \left| \frac{7}{8} - \frac{10}{16} \right| = 2 \quad 16 \times \left| \frac{11}{16} - \frac{10}{16} \right| = 1 \quad \textbf{\Rightarrow} \text{ bitstream is } 2\text{-PP}$$

- only evaluate powers-of-2 lengths
- does not provide information on how much better k can get

- Normalized Stability [2]
 - A bitstream is stable if error never exceeds an error budget from now on

5% error budget 101010101010101010101010101010101010 68.75% stable

stable (i.e., error always within budget)

- Normalized Stability [2]
 - A bitstream is stable if error never exceeds an error budget from now on

- Normalized Stability [2]
 - A bitstream is stable if error never exceeds an error budget from now on

Limitations of Prior Work

- Select the best bitstream for early termination from all possible versions of $\frac{1}{32}$
 - Apply normalized stability and progressive precision to all versions of $\frac{1}{32}$
 - Plot the accuracy vs time for bitstream(s) that scored the highest on the metric

• Reflect the accuracy of a bitstream at any arbitrary early termination point

• Reflect the accuracy of a bitstream at any arbitrary early termination point

, partial bitstream value

- Raw streaming accuracy $\Phi = 1 \frac{\sum_{i=1}^{L} |P_{X_i} P_X|}{L}$ desired bitstream value bitstream length
- Best bitstream for early termination will have highest Φ value

• Reflect the accuracy of a bitstream at any arbitrary early termination point

, partial bitstream value

• Raw streaming accuracy
$$\Phi = 1 - \frac{\sum_{i=1}^{L} |P_{X_i} - P_X|}{L}$$
 desired bitstream value bitstream length

• Best bitstream for early termination will have highest Φ value

Streaming
$$\operatorname{accuracy}_{value-dependent} = \frac{\Phi}{\Phi_{best}}$$
 for comparing bitstreams of the same value
Streaming $\operatorname{accuracy}_{value-independent} = \frac{\Phi - \Phi_{worst}}{\Phi_{best} - \Phi_{worst}}$ for comparing bitstreams of different values

- How do we find Φ_{best}
 - Observe that each successive partial bitstream lengths require monotonically increasing number of 1s by at most 1

- How do we find Φ_{best}
 - Observe that each successive partial bitstream lengths require monotonically increasing number of 1s by at most 1

 \rightarrow There always exists a bitstream that is optimal for early termination at arbitrary points since a partial bitstream of length i+1 can be constructed from a partial bitstream of length i

- How do we find Φ_{best}
 - Observe that each successive partial bitstream lengths require monotonically increasing number of 1s by at most 1

→ There always exists a bitstream that is optimal for early termination at arbitrary points since a partial bitstream of length i+1 can be constructed from a partial bitstream of length i

- Greedy approach:
 - Evaluate whether introducing 0 or 1 will minimize error at each additional bit
 - Call this a streaming-accurate bitstream

- How do we find Φ_{worst}
 - Bitstreams with value < 0.5 \leftarrow worst when all 1s clumped at the beginning
 - Bitstreams with value > 0.5 \leftarrow worst when all 1s clumped at the end

Streaming accuracy_{value-dependent} =
$$\frac{\Phi}{\Phi_{best}}$$

Streaming accuracy_{value-independent} = $\frac{\Phi - \Phi_{worst}}{\Phi_{best} - \Phi_{worst}}$

Comparison Against Prior Metrics

- For each representable value, use each metric to select the best bitstream for early-termination
 - Average across all values
 - If metric selects multiple, average across all selections

Characterization

- Streaming accuracy allows designers to perform valuable characterizations
- Characterize different SC components (and different designs of a component)
 - See if a unit enhances or hinders the overall circuit's ability to early terminate
 - Examples of some arithmetic units in paper
- Explore relation between other bitstream properties
 - See if properties can be jointly optimized
 - Example of bitstream independence vs. early termination in paper

Streaming-Accurate (SA) Bitstream Generator

- We propose a design for a bitstream generator that generates streamingaccurate bitstreams
- Area and power estimates @ 500 MHz:
 - Implemented Verilog RTL for L=64
 - Synopsys design compiler with NanGate FreePDK45 standard-cell library

Generator	Area (μm^2)	Power (uW)
LFSR	75.278	26.851
Halton (base 2)	69.16	39.73
Halton (base 3)	245.252	140.796
Sobol	208.81	75.546
SA	69.16	31.306

Accuracy Evaluation

• Evaluate the impact of using streaming-accurate bitstreams in computation

Gaussian blur 2D convolution: 256 x 256 grayscale image, 3 x 3 weight filter, 6 images

- For each input pixel, use the bitstream produced by each generator
- Error (RMSE) relative to the floating-point version

Conclusion

- Proposed streaming accuracy, a metric that measures how close a bitstream resembles its streaming-accurate form
 - Showed how it fills the gaps left by existing metrics
- Proposed a new bitstream generator that is guaranteed to produce bitstreams in their streaming-accurate form
 - Showed it achieves higher accuracy compared to other popular bitstream generators

Thank you!

Questions: live Q&A at session 4C or email julie.hsiao@mail.utoronto.ca