





## TENET: Temporal CNN with Attention for Anomaly Detection in Automotive Cyber-Physical Systems

Sooryaa Vignesh Thiruloga, Vipin Kumar Kukkala, Sudeep Pasricha Department of Electrical and Computer Engineering Colorado State University, Fort Collins, CO, USA {sooryaa, vipin.kukkala, sudeep}@colostate.edu

#### **SPONSORS**



## Outline

Introduction to Automotive Systems

**Prior Work** 

**Our Contributions** 

**TENET** Framework Overview

**Experimental Results** 

Conclusion



## Introduction to Automotive Systems



- Electronic control unit (ECU)
  - Engine control, Transmission control, Perception control etc.
- Automotive systems are becoming more complex to achieve autonomy
  - Electrical architecture of vehicles in 1980s vs 2020s.

With increasing automotive CPS complexity, attack surface also increases, motivating the need for powerful new Anomaly Detection solutions



## Anomaly Detection Approaches

#### Traditional methods

- Firewalls fail to provide protection from complex attacks
- Rule based approaches fail to detect novel attack patterns
- AI based anomaly detection system (ADS)
  - AI based ADSs are effective in learning complex patterns
  - Detect both known and novel attacks
  - Abundance of in-vehicle data
  - Increasing computation capabilities of ECU

Al based ADS provides a viable solution for anomaly detection



4

## **Relevant Prior Work**



**Colorado State University** 

## **Our Contributions**

- Proposed TENET framework for anomaly detection
  - Temporal convolutional neural attention (TCNA)
    - A novel architecture to learn very long term dependencies between messages
  - Divergence score metric
  - Decision tree based detector to detect variety of attacks
- Compared TENET framework with a spectrum of architectures
  - A RNN based replicator neural network (M. Weber et al., 2018)
  - A LSTM based autoencoder model with attention (M. O. Ezeme et al., 2018)
  - A GRU based autoencoder (V. Kukkala et al., 2020)
- Extensive analysis on memory and latency overhead



## System Model

- Multiple ECUs are connected using invehicle network
- Distributed ADS approach
  - Real-time and anomaly detection applications are co-located
- Assume attacker can gain access to the in-vehicle network using the most common attack vectors
  - Example: Infotainment system, ADAS system, OBD-II port, etc.
- Protocol agnostic, can be applied to Flexray, Ethernet or CAN
- Controller Area Network (CAN)





## **Attack Model**

#### Attacks evaluated against

- Plateau attack: Sets a constant value for a signal.
- Continuous attack: Slowly overwrites the signal value over a period.
- Playback attack: Replays a normal sequence of transmission from the past.
- Suppress attack: No message transmission allowed.





## **TENET Framework Overview**

#### Three phases of *TENET* framework

- Data collection
- Model learning
- Model evaluation





## TCNA Network Building Block

- TCNA block is combination of a temporal residual block (TRB) and self attention mechanism
- Temporal Residual Block (TRB)
  - TRB consists of two dilated causal convolution (DCC) layers, two weight normalization and two ReLU activation layers
  - The skip connection efficiently backpropagate gradients
- Self Attention mechanism
  - Helps identify important feature maps from the output of TRB and scale appropriately





## **TCNA Network Architecture**

#### TCNA Network Architecture

- Inputs pass through the first TCNA block without attention mechanism
- Feature maps generated by the first TCNA block traverses through stacked TCNA block with attention
- The output from final TCNA block is then passed through a dense layer to output predicted signal values

#### TCNA Training

- TCNA training is unsupervised
- Rolling window approach
- Mean squared error (MSE) based prediction error is back propagated to update weight parameters





## **TENET** Evaluation Phase

- Testing data split
- Divergence score vector
  - Computes signal level deviations between predicted and observed signals

 $DS_{i}^{m}(t) = \left(\hat{S}_{i}^{m}(t) - S_{i}^{m}(t+1)\right) \forall i \in [1, N_{m}], m \in [1, M] \dots (1)$ 

- Decision tree for classification
  - Lightweight classifier with high detection accuracy
- Anomaly warning





## **Simulation Setup**

- Sensitivity analysis on receptive field length
- Compared with best-known prior works
  - RN: [M. Weber et al., 2018]
  - HAbAD: [M. O. Ezeme et al., 2018]
  - INDRA: [V. Kukkala et al., 2020]
- Memory overhead and latency analysis
- Comparison metrics
  - Detection accuracy, False negative rate (FNR), Receiver operating characteristic curve with area under the curve (ROC-AUC), Mathews Correlation Coefficient (MCC)
- Dataset
  - Developed from real world in vehicle network data
  - Hyperparameter list for TENET
  - Train and Test split



| Hyperparameters |      |  |  |
|-----------------|------|--|--|
| Epochs          | 200  |  |  |
| Loss function   | MSE  |  |  |
| Optimizer       | ADAM |  |  |
| Learning rate   | 1e-4 |  |  |
| Batch size      | 256  |  |  |
| Kernel size     | 2    |  |  |
| TRB Layers      | 3    |  |  |

**Testing data** 



**Training data** 

## **TENET** Receptive Field Length Analysis

|                         | <b>Receptive field lengths</b> |        |               |        |
|-------------------------|--------------------------------|--------|---------------|--------|
|                         | 16                             | 32     | 64            | 128    |
| Average training loss   | 4.1e-4                         | 3e-4   | <b>2.5e-4</b> | 6.8e-4 |
| Average validation loss | 5.5e-4                         | 4.3e-4 | <b>2.9e-4</b> | 9.3e-4 |

- Receptive filed length analysis
  - Helps to understand if long receptive lengths can better learn the normal system behavior
  - Receptive field represents size of inputs influencing the output at a particular timestep
  - Relatively poor produced from relationship be

A receptive length of 64 effectively represents the input time series data

ture map esentation of the



## **Comparison with Prior Works**



**R** 

## **Comparison with Prior Works**





## **TENET** achieved an average of 19.14% improvement in MCC metric

RI

## TENET best performed with an AUC of 0.96



ention-bas et al., 201

## Memory and Latency Analysis



| ADS Framework | Memory<br>footprint (KB) | Model<br>parameters | Inference<br>time (μs) |
|---------------|--------------------------|---------------------|------------------------|
| TENET         | 59.62                    | 6064                | 250.24                 |
| RN [17]       | 7.2                      | 1300                | 412.50                 |
| INDRA [23]    | 453.8                    | 112900              | 482.10                 |
| HAbAD [24]    | 261.63                   | 64484               | 1370.10                |

- Model footprint, model parameters and latency
  - Tested on Nvidia Jetson TX2 with dual-core ARM cortex-A57 CPUs
  - Compared to RN, TENET has
    - 69.47% lower
    - 64.3% higher N
    - 37.25% higher
    - 9.48% higher c

TENET has relatively minimal inference time and memory overhead



## Conclusion

#### Proposed TCNA network

- Novel TCNA network to learn normal system behavior during learning phase
- Divergence score metric to quantify the deviation from expected behavior
- Decision tree based classifier to detect attacks at runtime
- Presented receptive field length analysis
- TENET performance analysis
  - Compared against various recurrent architectures with and without attention
- Performed memory and latency analysis
- TENET outperforms all compared works in all attack scenarios and metrics while having relatively low memory and detection latency



# Thank you

# **Questions?**

