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Introduction to Automotive Systems

• Electronic control unit (ECU)

• Engine control, Transmission control, Perception control

etc.

• Automotive systems are becoming more complex to

achieve autonomy

• Electrical architecture of vehicles in 1980s vs 2020s.
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]With increasing automotive CPS complexity, 

attack surface also increases, motivating the need 

for powerful new Anomaly Detection solutions
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Anomaly Detection Approaches

• Traditional methods

• Firewalls fail to provide protection from complex attacks

• Rule based approaches fail to detect novel attack patterns

• AI based anomaly detection system (ADS)

• AI based ADSs are effective in learning complex patterns

• Detect both known and novel attacks

• Abundance of in-vehicle data

• Increasing computation capabilities of ECU

AI based ADS provides a viable solution 

for anomaly detection



Relevant Prior Work

• [M. Weber et al., 2018] 

• Proposed a recurrent neural network (RNN) based model to learn the normal 

operating behavior of the in vehicle network by replicating its inputs

• Fails to detect complex attacks and small variations in attacks 

• [M. O. Ezeme et al., 2018]

• Proposed a LSTM based autoencoder with hierarchical Attention mechanism 

along with a Kernel Density Estimator + KNN method for anomaly detection

• Memory intensive and incurs large computational overhead

• [V. Kukkala et al., 2020]

• Proposed a gated recurrent unit (GRU) based autoencoder model

• Uses a static thresholding technique, will miss attacks below the threshold value
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Low memory footprint

Detect novel / complex attacks 

Low detection latency

High reliability



Our Contributions

• Proposed TENET framework for anomaly detection

• Temporal convolutional neural attention (TCNA)

• A novel architecture to learn very long term dependencies between messages

• Divergence score metric

• Decision tree based detector to detect variety of attacks

• Compared TENET framework with a spectrum of architectures 

• A RNN based replicator neural network (M. Weber et al., 2018)

• A LSTM based autoencoder model with attention (M. O. Ezeme et al., 2018)

• A GRU based autoencoder (V. Kukkala et al., 2020)

• Extensive analysis on memory and latency overhead 
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System Model

• Multiple ECUs are connected using in-

vehicle network

• Distributed ADS approach

• Real-time and anomaly detection applications 

are co-located

• Assume attacker can gain access to the 

in-vehicle network using the most 

common attack vectors 

• Example: Infotainment system, ADAS 

system, OBD-II port, etc.

• Protocol agnostic, can be applied to 

Flexray, Ethernet or CAN

• Controller Area Network (CAN)
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In–vehicle network

ECU ECU ECU

Malicious attacker



Attack Model

• Attacks evaluated against

• Plateau attack: Sets a constant value 

for a signal.

• Continuous attack: Slowly overwrites 

the signal value over a period.

• Playback attack: Replays a normal 

sequence of transmission from the 

past.

• Suppress attack: No message 

transmission allowed.
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Three phases of TENET framework

• Data collection

• Model learning

• Model evaluation

TENET Framework Overview
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Data preprocessing

Training data 

(no-attacks)

Testing data 

(with attacks)

Trusted In-vehicle network data

Data collection

Learning Evaluation

TCNA network

Hyperparameters



TCNA Network Building Block
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• TCNA block is combination of a temporal 

residual block (TRB) and self attention 

mechanism

• Temporal Residual Block (TRB)

• TRB consists of two dilated causal convolution 

(DCC) layers, two weight normalization and two 

ReLU activation layers

• The skip connection efficiently backpropagate 

gradients

• Self Attention mechanism
• Helps identify important feature maps from the 

output of TRB and scale appropriately

Q - Query

K - Key

V - Value



TCNA Network Architecture
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• TCNA Network Architecture

• Inputs pass through the first TCNA block without attention 

mechanism

• Feature maps generated by the first TCNA block 

traverses through stacked TCNA block with attention

• The output from final TCNA block is then passed through 

a dense layer to output predicted signal values

• TCNA Training

• TCNA training is unsupervised

• Rolling window approach

• Mean squared error (MSE) based prediction error 

is back propagated to update weight parameters



TENET Evaluation Phase  
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Testing data (with attacks)

Decision tree 

training

Trained TCNA 

network

Divergence 

score vector

TENET

(Trained TCNA 

network + 

Trained 

Decision tree)

Anomaly warning

Calibration data Evaluation data

• Testing data split

• Divergence score vector

• Computes signal level deviations 

between predicted and observed 

signals

𝐷𝑆𝑖
𝑚 𝑡 = መ𝑆𝑖

𝑚 𝑡 − 𝑆𝑖
𝑚 𝑡 + 1 ∀ 𝑖 ∈

1, 𝑁𝑚 , 𝑚 ∈ 1,𝑀 ..(1)

• Decision tree for classification

• Lightweight classifier with high 

detection accuracy

• Anomaly warning



Simulation Setup
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• Sensitivity analysis on receptive field length

• Compared with best-known prior works

• RN: [M. Weber et al., 2018]

• HAbAD: [M. O. Ezeme et al., 2018]

• INDRA: [V. Kukkala et al., 2020]

• Memory overhead and latency analysis

• Comparison metrics

• Detection accuracy, False negative rate (FNR), Receiver operating characteristic curve 

with area under the curve (ROC-AUC), Mathews Correlation Coefficient (MCC)

0.85

0.15

Training data

Training Validation

• Dataset

• Developed from real world in vehicle network data

• Hyperparameter list for TENET

• Train and Test split

0.3

0.7

Testing data

Evaluation Calibration

Hyperparameters

Epochs 200

Loss function MSE

Optimizer ADAM

Learning rate 1e-4

Batch size 256

Kernel size 2

TRB Layers 3



TENET Receptive Field Length Analysis

• Receptive filed length analysis

• Helps to understand if long receptive lengths can better learn the normal system 

behavior

• Receptive field represents size of inputs influencing the output at a particular 

timestep

• Relatively poor values for receptive length 128 indicates the feature map 

produced from this receptive length do not provide a better representation of the 

relationship between samples of input time-series
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Table I: TCNA variants with different receptive field lengths 

 Receptive field lengths 

16 32 64 128 

Average training loss  4.1e-4 3e-4 2.5e-4 6.8e-4 

Average validation loss 5.5e-4 4.3e-4 2.9e-4 9.3e-4 

 

A receptive length of 64 effectively 

represents the input time series data



Comparison with Prior Works
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RN: Replicator network [M. Weber et al., 2018] HAbAD: Hierarchical attention-based anomaly 

detection [M. O. Ezeme et al., 2018]

INDRA: Intrusion detection using recurrent 

autoencoders [V. Kukkala et al., 2020]

TENET achieved an average of 

3.32% improvement in detection 

accuracy

TENET achieved an average of 

32.70% reduction in FNR metric



RN: Replicator network [M. Weber et al., 2018] HAbAD: Hierarchical attention-based anomaly 

detection [M. O. Ezeme et al., 2018]

INDRA: Intrusion detection using recurrent 

autoencoders [V. Kukkala et al., 2020]

Comparison with Prior Works
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TENET achieved an average of 

19.14% improvement in MCC metric

TENET best performed with an AUC 

of 0.96 



Memory and Latency Analysis

• Model footprint, model parameters and latency

• Tested on Nvidia Jetson TX2 with dual-core ARM cortex-A57 CPUs

• Compared to RN, TENET has

• 69.47% lower FNR

• 64.3% higher MCC

• 37.25% higher ROC-AUC

• 9.48% higher detection accuracy
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TENET has relatively minimal 

inference time and memory 

overhead

Table III:  Memory, model size, and inference latency analysis 

ADS Framework 
Memory 

footprint (KB) 

Model 

parameters 

Inference 

time (𝝁𝒔) 

TENET 59.62 6064 250.24 

RN [17] 7.2 1300 412.50 

INDRA [23] 453.8 112900 482.10 

HAbAD [24] 261.63 64484 1370.10 

 



Conclusion 
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• Proposed TCNA network

• Novel TCNA network to learn normal system behavior during learning phase

• Divergence score metric to quantify the deviation from expected behavior

• Decision tree based classifier to detect attacks at runtime

• Presented receptive field length analysis

• TENET performance analysis

• Compared against various recurrent architectures with and without attention 

• Performed memory and latency analysis

• TENET outperforms all compared works in all attack scenarios and metrics 

while having relatively low memory and detection latency



Thank you

Questions?
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