

ELight: Enabling Efficient Photonic In-Memory Neurocomputing with Life Enhancement

Hanqing Zhu, Jiaqi Gu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen, David Z. Pan

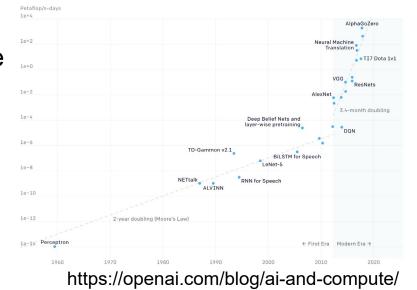
> Dept. of Electrical and Computer Engineering The University of Texas at Austin

This work is supported in part by MURI and ONR

AI Acceleration and Challenges

- ML models and dataset keep increasing
 - Low latency
 - > Low power
 - > High bandwidth

 Al compute requirement has 5× the doubling rate of Moore's law

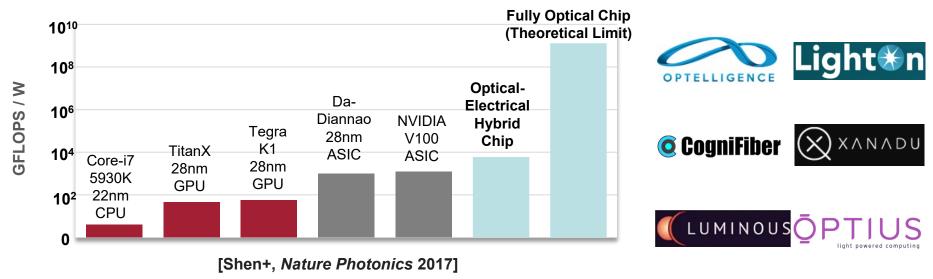


Photonic Al

- Use light to continue Moore's law
- Promising technology for next-generation AI accelerator

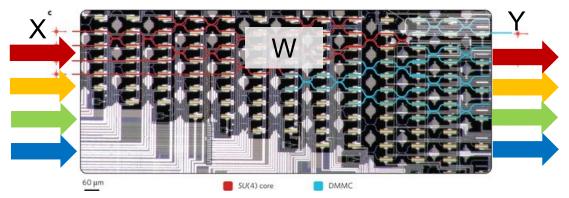
ZIGHTMATTER

Ultra-high speed & Ultra-low energy

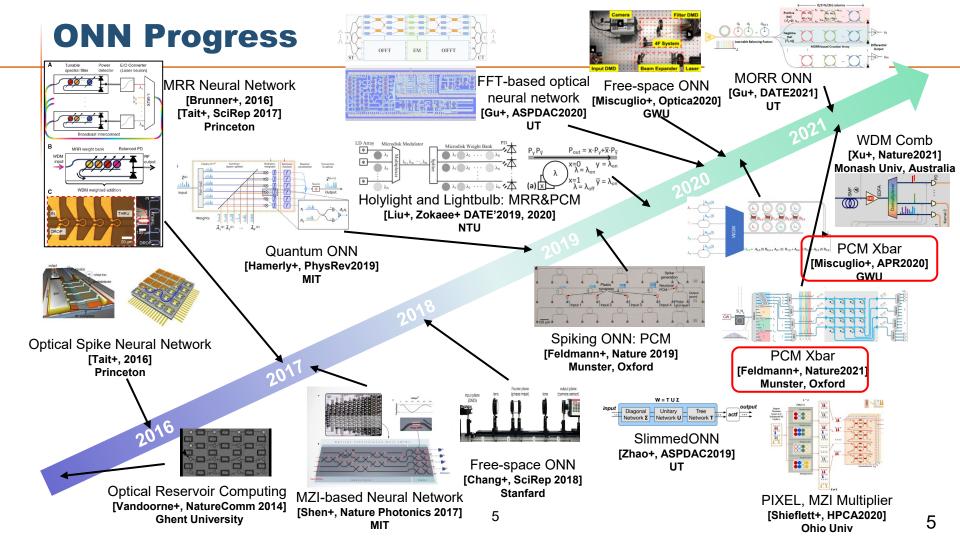


Optical Computing Basics

Optical Neural Network

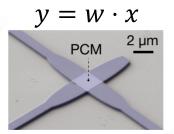


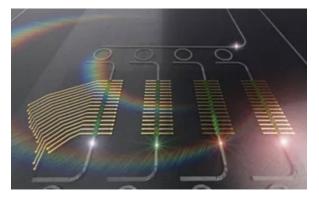
Photonic tensor unit for analog GEMM [MIT's Nat. Photonics'17]



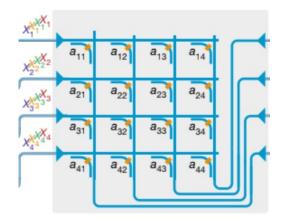
Computing with Photonic Phase Change Material

- Recall photonic devices: MZI, Microring, micro-disks, …
- A new device for non-volatile computing
 - Phase change material (PCM)
 - > Modulate the light transmission to achieve multiplication
 - > Store the transmission as a non-volatile memory



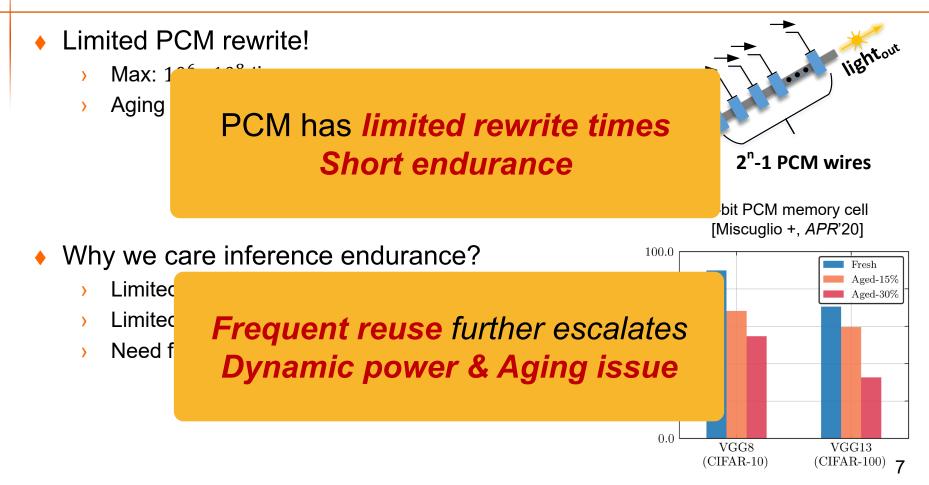


[Miscuglio+, APR'20]



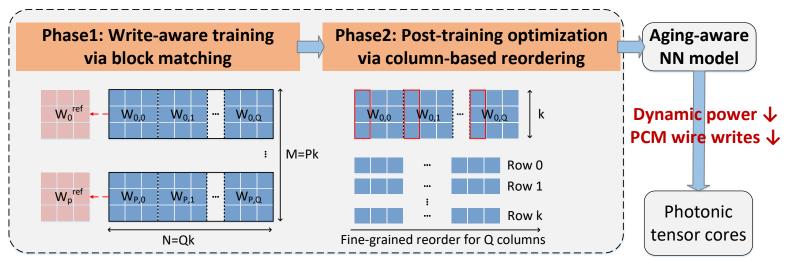
[Feldmann+, Nature'21]

Barriers Towards Practical Deployment

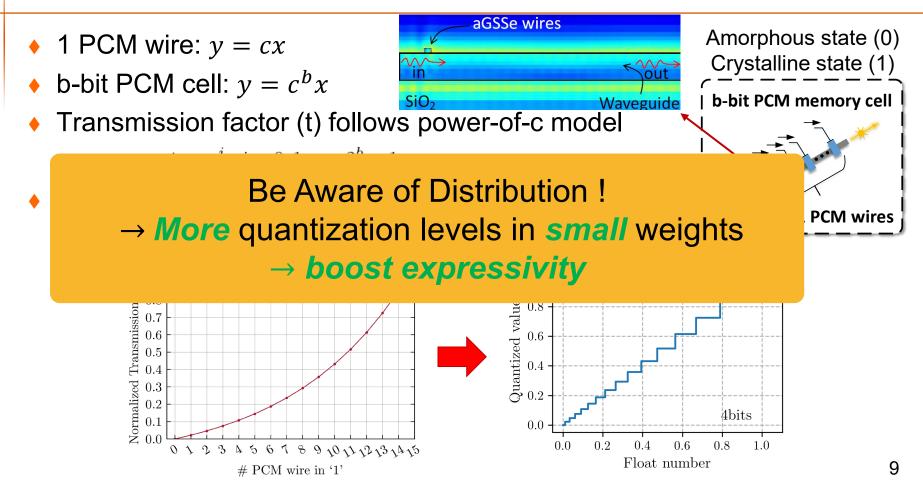


Our Proposed Aging-aware PCM-ONN: ELight

- A two-phase aging-aware optimization framework
 - Minimize PCM write operations in inference
- Achieved
 - $> > 20 \times$ fewer write operations
 - Minimized # max writes on a single PCM cell
 - $> > 30 \times$ less dynamic energy cost

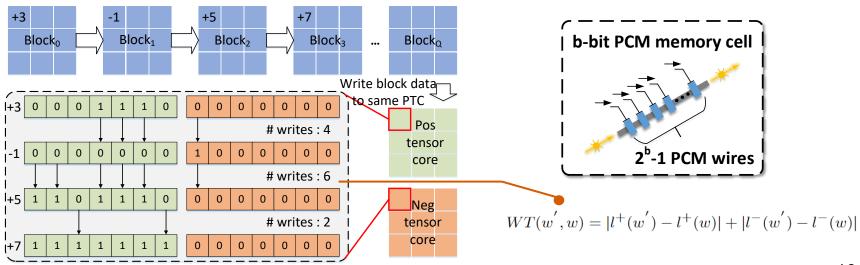


Distribution-aware Quantization



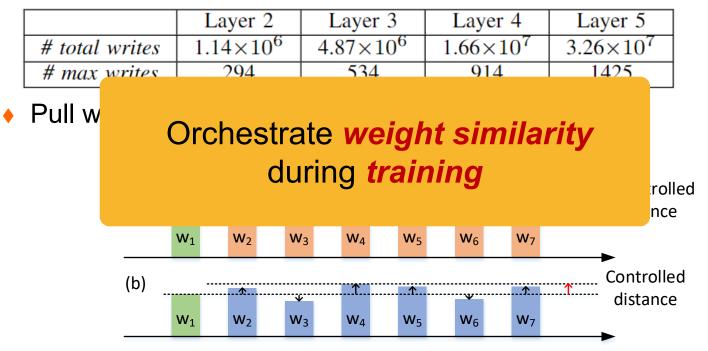
Augmented Redundant Write Elimination (ARWE)

- Block matrix multiplication
- Assume each PTC is assigned with one row of weight sub-blocks
- ARWE: Preserve current states at the most
 - Redundant write elimination scheme [Yang+, ISCAS]
 - > Easy to compare values as weights are known and pre-stored



Write-aware Training: Weight Matching

- Significant rewrite operations still exists with ARWE!
 - > Deployment of a 5-bit VGG8 model trained on CIFAR10

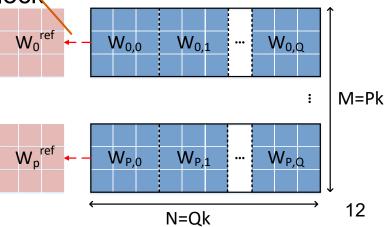


Write-aware Training: Block Matching

- Average a group weight blocks into one reference block
- Compute level difference between two blocks with L2 norm
 - > Penalize large value deviation but Allow slight value deviation
 - > Preserve model expressivity

 $LD(W^{ref}, W) = \sum_{i}^{\kappa} \sum_{j}^{\kappa} \|\tilde{l}^{+}(w_{ij}^{ref}) - \tilde{l}^{+}(w_{ij})\|^{2} + \|\tilde{l}^{-}(w_{ij}^{ref}) - \tilde{l}^{-}(w_{ij})\|^{2}.$

Match weight blocks with the reference block



Write-aware Training: Optimization issue

• \mathcal{L}_{BM} is not differentiable

> Recall the function to get transmission levels

$$l^{+}(w) = \begin{cases} (2^{b}-1) - \operatorname{Clip}(\mathbb{R}(\log_{t}(s|w|+\delta)), 0, 2^{b}-1), & w \ge 0\\ 0, & w < 0 \end{cases}$$

$$l^{-}(w) = \begin{cases} 0, \ w \ge 0 \\ \text{Clip}(\mathbb{R}(\log_{t} |s|w| + \delta)), 0, 2^{b} - 1) - (2^{b} - 1), \ w < 0 \end{cases}$$

STE

Not all gradients need to be propagated back

Mask out invalid gradients

> Only gradients from physically stored value are valid

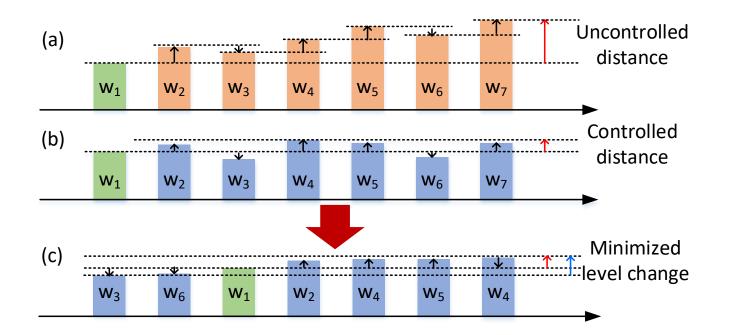
$$\mathcal{L}_{BM} = \sum_{l}^{L} \sum_{i}^{G} \sum_{j}^{n_{g}} \frac{1}{\beta^{B}} LD(B_{i}^{t}, B_{avr}^{t})$$
$$LD(B, A) = \sum_{i}^{k} \sum_{j}^{k} \|\tilde{l}^{+}(b_{ij}) - \tilde{l}^{+}(a_{ij})\|^{2} + \|\tilde{l}^{-}(b_{ij}) - \tilde{l}^{-}(a_{ij})\|^{2}$$

Post-training Optimization: Need of Reordering

- We only pull weights close to a reference
- No order information is introduced during our optimization!
 - Cannot guarantee best-of-reduction

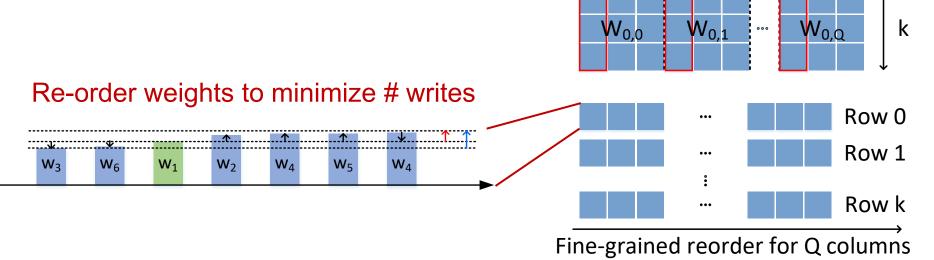
Post-training Optimization: One-shot Reordering

- Simply reorder the weight sequences
- Efficient reordering with negligible overhead



Post-training Optimization: One-shot Reordering

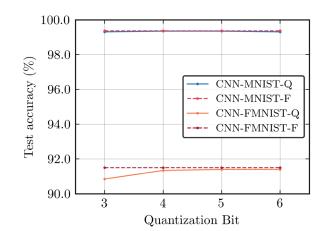
- Take one more step before real deployment
- One-shot recording concurrently for different columns
- No affect on the computation results
 - General matrix multiplication

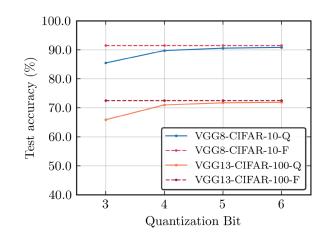


Experimental Results: Quantization

Experiments settings

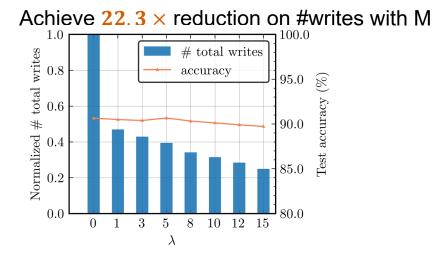
- > Photonic PCM memory: 3 6-bit
- > Photonic tensor core: 16×16 and 64×64
- Models: Simple CNN, VGG8 and VGG13
- > Dataset: MNIST, FashionMNIST, CIFAR10 and CIFAR100
- Distribution-aware quantization
 - > Small accuracy loss with > 4-bit

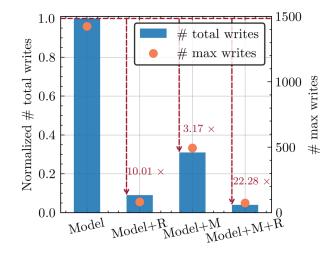




Experimental Results: # total Write

- 5-bit VGG8 on CIFAR10
- Write-aware training (M)
 - Trade-off between accuracy and write elimination
 - < 1% accuracy drop with sweet parameters</p>
- Post-training reordering (R)
 - Further cut down redundant writes





Experimental Results: Endurance & Energy

- \diamond > 20 × fewer write operations
- Minimized # max writes on a single PCM cell
- \bullet > 30 × less dynamic energy cost

a single PCM cell ONN Lifetime ↑ cost Dynamic energy ↓

Network	Dataset	Bitwidth	λ	Acc(%)/AC	# total writes \downarrow (×)		Energy cost \downarrow (×)		# max writes	
					-	+R	-	+R	-	+R
VGG8	CIFAR-10	3	0	86.71	1	6.52	1	9.27	128	15
			8	86.02/-0.69	22.12	46.11	6.63	69.29	14	7
		4	0	89.75	1	7.84	1	11.31	401	36
			10	89.94/+0.19	3.83	24.45	3.92	35.48	95	19
		5	0	90.56	1	10.01	1	14.35	1425	82
			10	90.12/-0.44	3.17	22.28	3.20	31.17	494	74
		6	0	90.83	1	12.31	1	16.89	4464	180
			5	89.88/-0.95	6.82	26.35	7.15	32.48	1560	146
VGG13	CIFAR-100	4	0	70.99	1	9.66	1	13.84	542	39
			10	70.44/-0.55	3.54	29.25	3.57	42.02	173	33
		5	0	71.73	1	12.06	1	17.29	1771	84
			3	71.95/+0.22	2.19	21.93	2.21	31.41	921	55
		6	0	71.88	1	14.37	1	17.62	4926	182
			3	70.97/-0.91	3.11	22.65	3.19	29.85	3577	156

Conclusion and Future work

- The *first* aging-aware optimization framework for Photonic in-memory computing
- Expressivity:
- Lifetime enhancement:
- Energy efficiency:

Distribution-aware quantization

- $> 20 \times$ fewer write operations
- $> 30 \times \text{less}$ dynamic energy cost
- Push forward the real deployment of Photonic in-memory computing

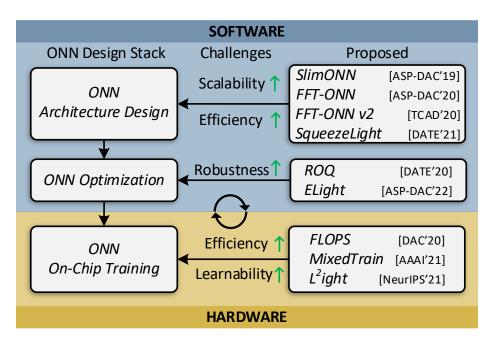
• Future direction

- > Preserve the accuracy of NN model with aged PCM cells
- > Counter other non-ideal factors such as device-to-device variations
- > Investigate the effect of temporal drift

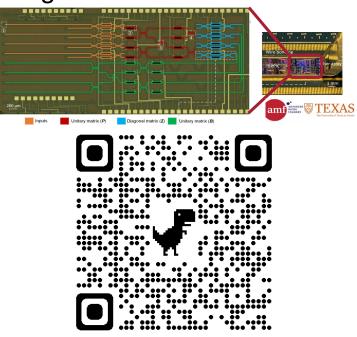
Our Recent Work & Open-source Framework

 Build ultra-fast (light-speed), ultra-energy efficient, and highly robust optical neural accelerators with photonic integrated circuits

Quto 🔸



Circuit-Architecture-Algorithm Co-Design!



PyTorch-ONN Library

Thanks!

Q & A?

