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Outline
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Least-Squares Fitting
• Standard approach in regression analysis to approximate solution of over-

determined systems
• Widely used in modeling, data fitting, predictive analysis, etc.
• High time complexity (O(N3)) and poor scalability for large-scale problems
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Linear Regression
• 𝐱𝐱: N-dimensional input vector
• 𝜙𝜙𝑗𝑗: basis function of 𝒙𝒙
• 𝑌𝑌: scalar output
• 𝜷𝜷: unknown parameters
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• M items of training  data 
𝐗𝐗 0 ,𝑌𝑌 0 , 𝐗𝐗 1 ,𝑌𝑌 1 ,⋯ , 𝐗𝐗 𝑀𝑀−1 ,𝑌𝑌 𝑀𝑀−1

where 𝐗𝐗(𝑖𝑖) = (𝜙𝜙0
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• If M>N (more equations than unknowns), 
it is an over-determined system

• 𝜷𝜷 can be estimated by minimizing sum-
of-squares error function𝑌𝑌 = �
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Solution of Least-Squares Fitting
• Analytical solution form

• 𝐗𝐗 = (𝐗𝐗 0 ,𝐗𝐗 1 ,⋯ ,𝐗𝐗 𝑀𝑀−1 )𝑇𝑇

• 𝐘𝐘 = (𝑌𝑌 0 ,𝑌𝑌 1 ,⋯ ,𝑌𝑌 𝑀𝑀−1 )𝑇𝑇

• Matrix-matrix multiplication: O(N3)
• Matrix inversion: O(N3)
• Matrix-vector multiplication: O(N2)
• High time complexity and not accelerator-friendly
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Computing in Memory
• CiM: promising technique to alleviate memory wall bottleneck
• Benefits: high bandwidth, low latency, high parallelism…
• Emerging non-volatile devices have ability of both memory and switch

• RRAM, MTJ, FeFET, PCM…
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Resistive Random-Access Memory (RRAM)

• An RRAM-based crossbar array can complete an analog matrix-vector
multiplication in O(1) time complexity

• Widely used for neural network acceleration
• Device-level CiM: RRAMs not only store analog values (by programming the

resistance), but also perform computations (via Kirchhoff's Law)
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Kirchhoff's Law

𝐈𝐈 = 𝐆𝐆𝑇𝑇𝐕𝐕

𝐼𝐼1 = 𝐺𝐺11𝑉𝑉1 + 𝐺𝐺21𝑉𝑉2 + 𝐺𝐺31𝑉𝑉3
𝐼𝐼2 = 𝐺𝐺12𝑉𝑉1 + 𝐺𝐺22𝑉𝑉2 + 𝐺𝐺32𝑉𝑉3
𝐼𝐼3 = 𝐺𝐺13𝑉𝑉1 + 𝐺𝐺23𝑉𝑉2 + 𝐺𝐺33𝑉𝑉3



Contributions
• RRAM-based architecture to accelerate least-squares fitting
• Software-hardware codesign: elaborate algorithm design and

closed-loop feedback circuit structure to achieve O(1) time
complexity for least-squares fitting

• Scalable and configurable architecture for handling large-scale
least-squares fitting problems
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Gradient Descent
• Minimizing a function by a series of updates to unknown parameters, each of

which takes steps proportional to the negative of the gradient of the function at
the current point

• 𝜂𝜂: learning rate
• Gradient descent based iterative form of LSF solution
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Direct Hardware Implementation
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ENERGY BREAKDOWN

About 3/4 energy is consumed by 
ADCs & DACs
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Proposed Approach
• Key principle: connect output to input  avoid analog signal storage,

as well as ADCs & DACs
• Closed-loop circuit automatically "converges" to DC point
• Iterations eliminated O(1) time complexity
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Circuit Design
• 𝐗𝐗+ and 𝐗𝐗− store positive

and negative values of 𝐗𝐗,
respectively

• OpAmp-based peripheral
circuits perform analog
operations (inversion, add
and subtraction)
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Architecture for Large-Scale Problems
• Size of a single crossbar array is limited
• To handle large-scale problems, we propose a scalable and configurable

architecture
• Composed of a set of blocks and peripheral circuits
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Block Circuit Design
• Two crossbar arrays in a block, storing positive and negative values,

respectively
• Switchable analog buffers to control whether a block is ON or OFF
• Bitlines' currents gathered to global bitlines

15



Simulation Results
• Circuits simulated with HSPICE
• Crossbar array size is 512*512
• RRAM resistance range: LRS=5K, HRS=5M
• Baseline: GPU-accelerated software solver with cuBLAS and cuSOLVER

running on NVIDIA K40m GPU
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Accuracy of Solutions
• Ideal case: no resistance variation & no resistance limits (LRS & HRS)
• Non-ideal case: RRAM resistance has sigma=20% variation & resistance limits

(LRS & HRS) applied
• RMSE normalized to GPU results
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Non-ideal case: 2-26% larger error than GPU solutions



Performance
• Time complexity from O(N3) to O(1)
• Higher speedup for larger problems
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132-3282X speedup vs. GPU solver



Energy Consumption
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8201-96738X energy reduction vs. GPU solver



Solution Refinement
• Approximate solution obtained by accelerator is used as initial guess for

further refinement on GPU
• Approximate solution close to precise solution, fewer iterations
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1.7-7X speedup vs. pure GPU solver



Conclusion
• Least-squares fitting can be finished in O(1) time complexity by

utilizing closed-loop principle based on RRAM-based computing-in-
memory accelerator

• 2-3 orders of magnitude speedups and 4-5 orders of magnitude
energy reduction compared with GPU solver; 1.7-7X speedups with
GPU refinement compared with pure GPU solver
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