
Solving Least-Squares Fitting in O(1)
Using RRAM-based Computing-in-

Memory Technique
Xiaoming Chen, Yinhe Han

Institute of Computing Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences

chenxiaoming@ict.ac.cn

About Me
• Xiaoming Chen, Associate Professor @ Institute of

Computing Technology, Chinese Academy of Sciences
• Received BS and PhD degrees in electronic engineering

from Tsinghua University in 2009 and 2014, respectively
• Research interests include EDA and computer architecture;

published about 100 papers in DAC, ICCAD, ASP-DAC,
DATE, HPCA, IEEE TCAD, IEEE TPDS, etc.

• Recipient of 2021 NSFC Excellent Young Scientists Fund
and 2015 European Design and Automation Association
(EDAA) Outstanding Dissertation Award

2

Outline
•Background
• Proposed Approach: Principle Overview
• Scalable Architecture for Large-scale Problems
• Simulation Results
•Conclusion

3

Least-Squares Fitting
• Standard approach in regression analysis to approximate solution of over-

determined systems
• Widely used in modeling, data fitting, predictive analysis, etc.
• High time complexity (O(N3)) and poor scalability for large-scale problems

4

Linear Regression
• 𝐱𝐱: N-dimensional input vector
• 𝜙𝜙𝑗𝑗: basis function of 𝒙𝒙
• 𝑌𝑌: scalar output
• 𝜷𝜷: unknown parameters

5

• M items of training data
𝐗𝐗 0 ,𝑌𝑌 0 , 𝐗𝐗 1 ,𝑌𝑌 1 ,⋯ , 𝐗𝐗 𝑀𝑀−1 ,𝑌𝑌 𝑀𝑀−1

where 𝐗𝐗(𝑖𝑖) = (𝜙𝜙0
𝑖𝑖 𝐱𝐱 ,𝜙𝜙1

𝑖𝑖 𝐱𝐱 ,⋯ ,𝜙𝜙𝑁𝑁−1
𝑖𝑖 𝐱𝐱)𝑇𝑇

• If M>N (more equations than unknowns),
it is an over-determined system

• 𝜷𝜷 can be estimated by minimizing sum-
of-squares error function𝑌𝑌 = �

𝑗𝑗=0

𝑁𝑁−1

𝛽𝛽𝑗𝑗𝜙𝜙𝑗𝑗 𝐱𝐱

𝐸𝐸(𝛃𝛃) =
1
2�

𝑖𝑖=0

𝑀𝑀−1

𝑌𝑌𝑖𝑖 − �
𝑗𝑗=0

𝑁𝑁−1

𝛽𝛽𝑗𝑗𝜙𝜙𝑗𝑗
𝑖𝑖 𝐱𝐱

2

Solution of Least-Squares Fitting
• Analytical solution form

• 𝐗𝐗 = (𝐗𝐗 0 ,𝐗𝐗 1 ,⋯ ,𝐗𝐗 𝑀𝑀−1)𝑇𝑇

• 𝐘𝐘 = (𝑌𝑌 0 ,𝑌𝑌 1 ,⋯ ,𝑌𝑌 𝑀𝑀−1)𝑇𝑇

• Matrix-matrix multiplication: O(N3)
• Matrix inversion: O(N3)
• Matrix-vector multiplication: O(N2)
• High time complexity and not accelerator-friendly

6

�𝛃𝛃 = 𝐗𝐗𝑇𝑇𝐗𝐗 −1𝐗𝐗𝑇𝑇𝐘𝐘

Computing in Memory
• CiM: promising technique to alleviate memory wall bottleneck
• Benefits: high bandwidth, low latency, high parallelism…
• Emerging non-volatile devices have ability of both memory and switch

• RRAM, MTJ, FeFET, PCM…

7

Computing in memory

Processor

Memory

CiM

Resistive Random-Access Memory (RRAM)

• An RRAM-based crossbar array can complete an analog matrix-vector
multiplication in O(1) time complexity

• Widely used for neural network acceleration
• Device-level CiM: RRAMs not only store analog values (by programming the

resistance), but also perform computations (via Kirchhoff's Law)

8

I1 I2 I3

V3

V2

V1

G11 G12 G13

G21 G22 G23

G31 G32 G33

Kirchhoff's Law

𝐈𝐈 = 𝐆𝐆𝑇𝑇𝐕𝐕

𝐼𝐼1 = 𝐺𝐺11𝑉𝑉1 + 𝐺𝐺21𝑉𝑉2 + 𝐺𝐺31𝑉𝑉3
𝐼𝐼2 = 𝐺𝐺12𝑉𝑉1 + 𝐺𝐺22𝑉𝑉2 + 𝐺𝐺32𝑉𝑉3
𝐼𝐼3 = 𝐺𝐺13𝑉𝑉1 + 𝐺𝐺23𝑉𝑉2 + 𝐺𝐺33𝑉𝑉3

Contributions
• RRAM-based architecture to accelerate least-squares fitting
• Software-hardware codesign: elaborate algorithm design and

closed-loop feedback circuit structure to achieve O(1) time
complexity for least-squares fitting

• Scalable and configurable architecture for handling large-scale
least-squares fitting problems

9

Gradient Descent
• Minimizing a function by a series of updates to unknown parameters, each of

which takes steps proportional to the negative of the gradient of the function at
the current point

• 𝜂𝜂: learning rate
• Gradient descent based iterative form of LSF solution

10

𝛃𝛃[𝑡𝑡 + 1] = 𝛃𝛃[𝑡𝑡] − 𝜂𝜂𝛻𝛻𝐸𝐸 𝛃𝛃

𝛽𝛽𝑗𝑗[𝑡𝑡 + 1] = 𝛽𝛽𝑗𝑗[𝑡𝑡] + 𝜂𝜂�

𝑖𝑖=0

𝑀𝑀−1

𝜙𝜙𝑗𝑗
𝑖𝑖 𝐱𝐱 𝑌𝑌𝑖𝑖 − �

𝑗𝑗=0

𝑁𝑁−1

𝛽𝛽𝑗𝑗[𝑡𝑡]𝜙𝜙𝑗𝑗
𝑖𝑖 𝐱𝐱

𝛃𝛃[𝑡𝑡 + 1] = 𝛃𝛃[𝑡𝑡] + 𝜂𝜂𝐗𝐗𝑇𝑇]𝐘𝐘 − 𝐗𝐗𝛃𝛃[𝑡𝑡

Direct Hardware Implementation
11

Xβ

= −R Y Xβ

TX R

R
Tη+β X R

[]tβ

[1]t +β
ADCs

D
A

C
s

ADC,
0.58

DAC,
0.15

Digital,
0.19

Crossbar,
0.09

ENERGY BREAKDOWN

About 3/4 energy is consumed by
ADCs & DACs

𝛃𝛃[𝑡𝑡 + 1] = 𝛃𝛃[𝑡𝑡] + 𝜂𝜂𝐗𝐗𝑇𝑇]𝐘𝐘 − 𝐗𝐗𝛃𝛃[𝑡𝑡

Proposed Approach
• Key principle: connect output to input avoid analog signal storage,

as well as ADCs & DACs
• Closed-loop circuit automatically "converges" to DC point
• Iterations eliminated O(1) time complexity

12

Xβ

= −R Y Xβ

TX R

βR
Y Tη= +β β X R

)𝛃𝛃 = 𝛃𝛃 + 𝜂𝜂𝐗𝐗𝑇𝑇(𝐘𝐘 − 𝐗𝐗𝛃𝛃

𝜂𝜂𝐗𝐗𝑇𝑇(𝐘𝐘 − 𝐗𝐗𝛃𝛃) = 𝟎𝟎

𝐗𝐗𝛃𝛃 = 𝐘𝐘

Circuit Design
• 𝐗𝐗+ and 𝐗𝐗− store positive

and negative values of 𝐗𝐗,
respectively

• OpAmp-based peripheral
circuits perform analog
operations (inversion, add
and subtraction)

13

Architecture for Large-Scale Problems
• Size of a single crossbar array is limited
• To handle large-scale problems, we propose a scalable and configurable

architecture
• Composed of a set of blocks and peripheral circuits

14

Block Circuit Design
• Two crossbar arrays in a block, storing positive and negative values,

respectively
• Switchable analog buffers to control whether a block is ON or OFF
• Bitlines' currents gathered to global bitlines

15

Simulation Results
• Circuits simulated with HSPICE
• Crossbar array size is 512*512
• RRAM resistance range: LRS=5K, HRS=5M
• Baseline: GPU-accelerated software solver with cuBLAS and cuSOLVER

running on NVIDIA K40m GPU

16

Accuracy of Solutions
• Ideal case: no resistance variation & no resistance limits (LRS & HRS)
• Non-ideal case: RRAM resistance has sigma=20% variation & resistance limits

(LRS & HRS) applied
• RMSE normalized to GPU results

17

Non-ideal case: 2-26% larger error than GPU solutions

Performance
• Time complexity from O(N3) to O(1)
• Higher speedup for larger problems

18

132-3282X speedup vs. GPU solver

Energy Consumption
19

8201-96738X energy reduction vs. GPU solver

Solution Refinement
• Approximate solution obtained by accelerator is used as initial guess for

further refinement on GPU
• Approximate solution close to precise solution, fewer iterations

20

1.7-7X speedup vs. pure GPU solver

Conclusion
• Least-squares fitting can be finished in O(1) time complexity by

utilizing closed-loop principle based on RRAM-based computing-in-
memory accelerator

• 2-3 orders of magnitude speedups and 4-5 orders of magnitude
energy reduction compared with GPU solver; 1.7-7X speedups with
GPU refinement compared with pure GPU solver

21

Thanks for Your Attention

	Solving Least-Squares Fitting in O(1) Using RRAM-based Computing-in-Memory Technique
	About Me
	Outline
	Least-Squares Fitting
	Linear Regression
	Solution of Least-Squares Fitting
	Computing in Memory
	Resistive Random-Access Memory (RRAM)
	Contributions
	Gradient Descent
	Direct Hardware Implementation
	Proposed Approach
	Circuit Design
	Architecture for Large-Scale Problems
	Block Circuit Design
	Simulation Results
	Accuracy of Solutions
	Performance
	Energy Consumption
	Solution Refinement
	Conclusion
	Thanks for Your Attention

