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« Standard approach in regression analysis to approximate solution of over-
determined systems

* Widely used in modeling, data fitting, predictive analysis, etc.
« High time complexity (O(N3)) and poor scalability for large-scale problems




* X: N-dimensional input vector * M items of training data

- ¢;: basis function of x (X, y©@), (X, y W), ... (XM=1, yM-1))
- Y: scalar output where X® = (65" (%), ¢,” (), -, py2, GO)"
. B: unknown parameters * If M>N (more equations than unknowns),
' it is an over-determined system
N-1 * B can be estimated by minimizing sum-
Y = Z Bidi(x) of-squares error function
j:O M-1
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Solution of Least-Squares Fitting

« Analytical solution form

B = XTX)"1XTY

e X = (X x@) ... xM-1)yT
e Y = (YO, Yy, ... yM-1yT

« Matrix-matrix multiplication: O(N?3)

« Matrix inversion: O(N?3)

« Matrix-vector multiplication: O(N?)

« High time complexity and not accelerator-friendly



Computing in Memory

« CiM: promising technique to alleviate memory wall bottleneck
» Benefits: high bandwidth, low latency, high parallelism...

 Emerging non-volatile devices have ability of both memory and switch
- RRAM, MTJ, FeFET, PCM...

Processor

I Computing in memory
>

Memory




Vi Kirchhoff's Law
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- An RRAM-based crossbar array can complete an analog matrix-vector
multiplication in O(1) time complexity

* Widely used for neural network acceleration

* Device-level CiM: RRAMs not only store analog values (by programming the
resistance), but also perform computations (via Kirchhoff's Law)



« RRAM-based architecture to accelerate least-squares fitting

- Software-hardware codesign: elaborate algorithm design and
closed-loop feedback circuit structure to achieve O(1) time
complexity for least-squares fitting

* Scalable and configurable architecture for handling large-scale
least-squares fitting problems
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 Minimizing a function by a series of updates to unknown parameters, each of

which takes steps proportional to the negative of the gradient of the function at
the current point

Blt + 1] = B[t] —nVE(B)
 11: learning rate

 Gradient descent based iterative form of LSF solution
M-1

| N-
gle+11=glel+n Y |6 Y- Z t1g” ()

=0

g
Blt + 1] = B[t] + X" (Y — XB[¢])



Direct Hardware Implementation
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ENERGY BREAKDOWN

Crossbar,
0.09

Digital,
0.19

ADC,
0.58

About 3/4 energy is consumed by
ADCs & DACs
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- Key principle: connect output to input 2 avoid analog signal storage,
as well as ADCs & DACs

» Closed-loop circuit automatically "converges" to DC point
* |terations eliminated = O(1) time complexity

B =B +nX"(Y-XB)
N

v v ¥ nXT"(Y—-XB) =0
—» R=Y-Xp B:B+77XTR<-‘ @

< . XB =Y

> XB > X'R
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« X, and X_ store positive

and negative values of X,
respectively

- OpAmp-based peripheral
circuits perform analog
operations (inversion, add
and subtraction)
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» Size of a single crossbar array is limited

« To handle large-scale problems, we propose a scalable and configurable
architecture

« Composed of a set of blocks and peripheral circuits
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- Two crossbar arrays in a block, storing positive and negative values,
respectively

» Switchable analog buffers to control whether a block is ON or OFF
 Bitlines' currents gathered to global bitlines

Global WL
Local RWL

A,

1471 18991
19 8291

(), 1 g
. = | O
Switchable .S
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analog buffer
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 Circuits simulated with HSPICE
* Crossbar array size is 512*512
« RRAM resistance range: LRS=5K, HRS=5M

« Baseline: GPU-accelerated software solver with cuBLAS and cuSOLVER
running on NVIDIA K40m GPU



Accuracy of Solutions
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* Ideal case: no resistance variation & no resistance limits (LRS & HRS)

 Non-ideal case: RRAM resistance has sigma=20% variation & resistance limits

(LRS & HRS) applied
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Non-ideal case: 2-26% larger error than GPU solutions



Performance

« Time complexity from O(N3) to O(1)
* Higher speedup for larger problems

100 s GPU Accelerator  ses@s» Speedup
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Energy Consumption
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Solution Refinement
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« Approximate solution obtained by accelerator is used as initial guess for
further refinement on GPU

« Approximate solution close to precise solution, fewer iterations
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- Least-squares fitting can be finished in O(1) time complexity by
utilizing closed-loop principle based on RRAM-based computing-in-

memory accelerator
« 2-3 orders of magnitude speedups and 4-5 orders of magnitude

energy reduction compared with GPU solver; 1.7-7X speedups with
GPU refinement compared with pure GPU solver
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