

Agency for Science, Technology and Research

SINGAPORE

NANYANG TECHNOLOGICAL UNIVERSITY

SonicFFT: A system architecture for ultrasonic based FFT acceleration

Darayus Adil Patel¹, Viet Phuong Bui², Kevin Tshun Chuan Chai³, Amit Lal⁴, Mohamed M. Sabry Aly¹

¹ Nanyang Technological University, Singapore
 ² A*STAR Institute of High Performance Computing, Singapore
 ³ A*STAR Institute of Microelectronics, Singapore
 ⁴ Cornell University, USA

ASPDAC 2022

FFT Applications

£CS

2/25

Current FFT Implementations

3/25

Compact-modelling & System Architecture

03

02

SonicFFT Data Mapping methodology

64 Evaluation Framework

OS Results & Analysis

In-silica Ultrasonic FFT Computation

• Receiver Plane Intensity = \mathcal{F} (EM wave distribution at input plane)

In-silica Ultrasonic FFT Computation

ECS
8/25

- Ultrasonic wave propagation in silicon for FFT computation
- 2D FFT computational complexity of O(N) instead of $O(N^2 log N)$

02

Compact-modelling & System Architecture

SonicFFT Data Mapping methodology

Compact Model of Wavefront Computing (WFC) Accelerator

• <u>Data Buffers</u>: SRAM based local accelerator memory

10/25

- <u>DAC & ADC</u>: No. of DACs & ADCs increase linearly with array size
- <u>Transducer Array</u>: Array size ($\delta \times \delta$) determines WFC accelerator computation capacity
- <u>Transmission Medium</u>: Fused silica transmission medium
- Lens: Ideal / Multi-phase Fresnel Lens

WFC Accelerator Latency: Constituent components

 Accelerator latency dominated by transmission medium for large array sizes

WFC Accelerator Power: Constituent components

• Accelerator power dominated by transducers for large array sizes

System Architecture

* PCIe 5.0 Data Interface

Compact-modelling & System Architecture

SonicFFT Data Mapping methodology

SonicFFT: Data Mapping Methodology

€CS 15/25

SonicFFT: Data Mapping Methodology

ECS 16/25

- Each stage of the CT Algorithm computes a different size DFT
- Preliminary stages mapped to WFC accelerator
- Final stage twiddle multiplications & additions mapped to host processor

Compact-modelling & System Architecture

SonicFFT Data Mapping methodology

Evaluation Framework

€CS 18/25

System parameters for SonicFFT evaluation

Baseline

- <u>Hardware</u>: Octa-core Processor + 1GB main memory
- <u>Software</u>: FFTW Library

- Hardware: WFC accelerator interfaced with Octa-core Processor + 1GB main memory
- <u>Software</u>: Custom mapping software

Compact-modelling & System Architecture

SonicFFT Data Mapping methodology

Results

	WFC Config						128	256	512	1024	2048	4096
	\rightarrow	4×4	8×8	16×16	32×32	64×64	×	×	×	×	×	×
↓ N×N Config							128	256	512	1024	2048	4096
64×64	Speedup (×)	0.77	0.95	1.02	1.04	1.05	-	-	-	-	-	-
	Energy Reduction (×)	0.77	0.95	1.02	1.04	1.05	` <u>-</u> ``	-	-	-	-	-
	EDP Gain (×)	0.59	0.9	1.03	1.08	1.10	-	-	-	-	-	-
128×128	Speedup (×)	-	0.83	1.04	1.12	1.15	1.17	-	-	-	-	-
	Energy Reduction (×)	-	0.83	1.03	1.12	1.15	1.17	-	-	-	-	-
	EDP Gain (×)	-	0.69	1.07	1.26	1.33	1.37	-	-	-	-	-
256×256	Speedup (×)	-	-	1.02	1.31	1.45	1.52	1.58	-	-	-	-
	Energy Reduction (×)	-	-	1.02	1.30	1.44	1.52	1.57	-	-	-	-
	EDP Gain (×)	-	-	1.04	1.69	2.09	2.31	2.49	-	-	-	-
512×512	Speedup (×)	-	-	-	1.66	2.18	2.57	2.86	3.22	-	-	-
	Energy Reduction (×)	-	-	-	3.11	2.80	2.52	2.15	1.63	-	-	-
	EDP Gain (×)	-	-	-	2.71	4.68	6.48	7.99	10.02	-	-	-
1024×1024	Speedup (×)	-	-	-	-	3.41	4.61	5.97	7.52	10.8	-	-
	Energy Reduction (×)	-	-	-	-	3.33	4.46	5.67	6.91	9.06	-	-
	EDP Gain (×)	-	-	-	-	11.34	20.55	33.85	51.95	97.69	-	-
2048×2048	Speedup (×)	-	-	-	-	-	5.76	7.78	11	16	39.2	-
	Energy Reduction (×)	-	-	-	-	-	5.66	7.48	9.98	12.96	19.4	-
	EDP Gain (×)	-	-	-	-	-	32.60	58.20	109.3	207.91	761.08	-
4096×4096	Speedup (×)	-	-	-	-	-	-	7.67	10.2	14.9	23.8	117.6
	Energy Reduction (×)	-	-	-	-	-	-	7.44	9.50	12.46	15.38	19.69
	FDP Gain (x)	-	-	-	-	_	_	57.06	97.08	185.5	366.53	2317.3

Results: Constituent Components

Latency comparison with State of the Art

23/25

H. Cılasun et al., "CRAFFT: High Resolution FFT Accelerator In Spintronic Computational RAM"
 X. Chen, et al, "A Variable-Size FFT Hardware Accelerator Based on Matrix Transposition"
 Xiaohui Li & Ellen Blinka; Texas Instruments White Paper: Very large FFT for TMS320C6678 processors

Energy comparison with State of the Art

24/25

H.Cılasun et al., "CRAFFT: High Resolution FFT Accelerator In Spintronic Computational RAM"
 X. Chen, et al, "A Variable-Size FFT Hardware Accelerator Based on Matrix Transposition"

EDP comparison with State of the Art

25/25

H.Cılasun et al., "CRAFFT: High Resolution FFT Accelerator In Spintronic Computational RAM"
 X. Chen, et al, "A Variable-Size FFT Hardware Accelerator Based on Matrix Transposition"

Speaker Contact Details: Dr. Darayus Adil Patel : dpatel@ntu.edu.sg