
Making Deep Learning More Portable with
Deep Learning Compiler

Cody Yu (hyuz@amazon.com),
Senior Applied Scientist, Deep Engine Science, AWS AI
Project Management Committee (PMC) member, Apache TVM

mailto:hyuz@amazon.com

Existing Deep Learning Frameworks

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 2

High-level data flow graph

Frameworks

Hardware

Primitive Tensor operators such as Conv2D

eg. cuDNN Offload to heavily optimized
DNN operator library

Why Deep Learning Compiler?

Usability: Users have to program/deploy models for a framework
• Multiple frameworks
• Multiple platforms

Performance portability: Frameworks invoke kernel libraries
• What if the targeting platform doesn’t have a (high-performance) kernel library?
• What if the operator is not included in the kernel library?
• Does the kernel library do enough optimization?
• How to apply more aggressive graph-level optimizations (e.g., operator fusion)?

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 3

DL compiler serves as a unified intermediate layer similar to LLVM

Deep Learning Compiler

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 4

Deep Learning Frameworks

Model Marketplace

Inference Target

Deep Learning Compiler

Deep Learning Compiler

Model Marketplace

Inference Target

Apache TVM: An End-to-End Deep Learning Compiler

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 5

Relay: Graph-Level Differentiable IR

LLVM, CUDA, Metal VTA

Optimization

AutoTVM

Ansor

Hardware
Fleet

Runtime

Graph Runtime

VM

Interpreter

Tensor Expression IR
BYOC

Edge
FPGA

Cloud
FPGA ASIC

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan et al. "TVM: An
automated end-to-end optimizing compiler for deep learning." In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pp. 578-594. 2018.

Porting the Performance to General Processors (CPU, GPU)

Optimization

AutoTVM

Ansor

Hardware
Fleet

AutoTVM: Performance auto-tuning with schedule templates
Ansor: generating high-performance schedules from scratch

Tensor-Level IR in TVM

• Tensor-level IR is similar to code AST
• The arithmetic expression of the operator. Example: Tensor addition

• The hardware dependent schedule
• Example: loop splitting with the optimized factor for a certain device

• Relay IR can be lowered to tensor-level IR by given the target hardware device

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 7

n = te.var("n")
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
C = te.compute(A.shape, lambda i: A[i] + B[i], name="C")

s = te.create_schedule(C.op)
bx, tx = s[C].split(C.op.axis[0], factor=64)

for (int i = 0; i < n; ++i) {
C[i] = A[i] + B[i];

}

for (int bx = 0; bx < ceil(n / 64); ++bx) {
for (int tx = 0; tx < 64; ++tx) {

int i = bx * 64 + tx;
if (i < n) {

C[i] = A[i] + B[i];
}}}

AutoTVM: Template-based Performance Auto-Tuning

• It is challenging to have a schedule fitting to all devices
• e.g., NVIDIA T4, V100, and A100 have different GPU architectures and configurations

• Can we let TVM realize the best schedule configuration
by given the target device?

• AutoTVM: A learning- based auto-tuning framework

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 8

s = te.create_schedule(C.op)
bx, tx = s[C].split(C.op.axis[0], factor=64)

s = te.create_schedule(C.op)
cfg = autotvm.ConfigSpace()
bx, tx = cfg.define_split(“c_factor”, C.op.axis[0], num_outputs=2)

Original Schedule

Schedule with an AutoTVM tuning space

Symbolic axes can be used by the rest schedule primitives

Challenges in AutoTVM

Template-guided search
• Use templates to define the search space
• Write a template for every operator

Drawbacks
• Templates are hard to write

• Need knowledge of hardware and operator
• The number of required templates is large

• 15k+ lines of code in TVM repo
• continues to grow as new op comes

• The templates are not optimal
• Manual enumeration cannot cover all optimizations

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 9

...

(a)	Template-guided	Search

Fixed	Manual	Template

for i.0 in range():
for j.0 in range():
for k.0 in range():

for i.1 in range():
for j.1 in range():

C[...] += A[...] * B[...]
for i.2 in range():

for j.2 in range():
D[...] = max(C[...], 0.0)

?
?
?
?
?

?

?
?

Parameter	Serach

Ansor: Generating Schedules from Scratch

Hierarchical Approach
• Phase 1: High-level program structure generation

• Generate a few program structures (sketches)
• Phase 2: Low-level detail sampling

• Turn sketches to complete programs
• Phase 3: Performance fine-tuning with a cost model

• Evolutionary tune the program performance

Feature Highlights
• Tune any compute function without predefined schedule templates
• Extract tuning tasks based on operator fusion results
• Prioritize performance bottlenecks

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 10

Evolutionary	 fine-tuning

Better	Programs

Low-level	detail	samping

...
for ...

for ...
for ...

for ...
...

for ...
for ...
for ...

for ...
...

for ...
for ...

for ...
for ...

(c)	Ansor’s Hierarchical	Approach

High-level structure	generation

......
for i.0 in range(64):

for j.0 in range(64):
for k.0 in range(512):

for i.1 in range(8):
for j.1 in range(8):

D[...] = ...

Complete Programs

?
?

?

?

?

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
Ion Stoica. "Ansor: Generating high-performance tensor programs for deep learning." In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pp. 863-879. 2020.

Evaluation: End-to-End Network

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 11

Intel-Platinum-8269CY (20 cores) NVIDIA V100

ARM Cortex-A53 on Rasp3 (4 cores)

Analysis
• Ansor performs best or equally the best in all test

cases with up to 3.8x speedup
• Ansor delivers portable performance

Porting the Performance to Custom Accelerators

BYOC: Bring Your Own Codegen to Apache TVM

Relay: Graph-Level Differentiable IR

LLVM, CUDA, Metal VTA

Tensor Expression IR

BYOC

Edge
FPGA

Cloud
FPGA

ASIC

A Motivating Example: R-CNN

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 13

Backbone CNN

RPN

RoI Heads

Post Process

NMS

Loop

A common CNN (e.g., ResNet) (fully offloadable)

Region Proposal Network
(non-maximum suppression is usually not offloadable)

Region of Interest (fully offloadable)

Post process (loop structure is usually not offloadable)

Bring Your Own Codegen (BYOC) Flow Overview

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 14

Host
Modules

Accelerator
Modules

Runtime
Module

Model Loading

Graph Partitioning (Relay)

Backend-Independent
Graph Optimization (Relay)

Accelerator-specific
Optimization

Code
Generation

Codegen
(Tensor Level

IR)

Convert a model file in any format to a Relay graph
Apply common graph optimizations
(e.g., constant folding, dead code elimination, etc)

Partition the graph to two sets
• Left: Unsupported ops/structures remain on TVM
• Right: Supported ops/structure to your codegen

Custom quantization, data layout transform, etc

Generate/compile code for your runtime

Chen, Zhi, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma,
Yida Wang. "Bring Your Own Codegen to Deep Learning Compiler." arXiv preprint arXiv:2105.03215 (2021).

BYOC is popular in Apache TVM!

• Many backend integrations are open source available
• Many AI accelerator vendors have

embraced Apache TVM with BYOC
as their official compiler solutions
• AWS
• Marvell
• Qualcomm
• SiMa.ai
• Tencent
• MediaTek
• ITRI
• …and more

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 15

Accelerator Compiler Stack
NVIDIA GPUs NVIDIA TensorRT
NVIDIA GPUs NVIDIA CUTLASS

Apple NN processors Apple CoreML
Apple NN accelerator platforms Apple BNNS Library

Xilinx DPU (cloud & edge FPGAs) Xilinx Vitis-AI
Intel x86 CPUs Intel OneDNN

Arm Cortex-M NPUs Arm CMSIS-NN
Arm Ethos NPUs Arm Ethos compiler

Arm CPUs Arm Compute Library

Status of Apache TVM (as of Dec. 2021)

Community
• Github stars: 7.5k
• Contributors: 600+

Discuss forum
• 122k pageviews
• ~3k user visits per month

Regular events/meetups
• Monthly community meetup
• Annual conference

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 16

TVM Community @ Discord
https://discord.gg/QnZRa6eC

https://discord.gg/QnZRa6eC

