
Lucas Klemmer, Daniel Große
Institute for Complex Systems (ICS)

Web: jku.at/ics

Email: lucas.klemmer@jku.at

WAL: A Novel Waveform Analysis Language
for Advanced Design Understanding and
Debugging

2

Bio

• Lucas Klemmer

• PhD student at the Institute for Complex Systems

• Johannes Kepler University Linz Austria

• Interests:

◦ Verification

◦ EDA tools

◦ RISC-V

3

Waveform Debugging: Problem or Solution?

• Waveforms are the fundamental data format for HW development
◦ Produced by simulators and formal tools

• Proven technique for design understanding and debugging

• Waveforms contain incredible amounts of information
◦ performance, correctness, data/control flow, optimization, …

• Problems
◦ 100% manual process

◦ Tedious and slow navigation

◦ Only small slice of data visible at once

◦ Only for “simple” signal relations

◦ Cannot be automated

4

WAL: Waveform Analysis Language

• WAL is Domain Specific Language (DSL) to express HW analysis problems

• Specialized language constructs for HW domain:
◦ Waveform signals

◦ Time

◦ Hierarchy (modules, submodules)

◦ Signal relations (bus interfaces)

• Not just true/false expressions, much more than SVA, PSL, …

• Full capabilities of scripting languages (functions, external libraries, …)

• Implemented in Python
◦ Access to a billion Python packages!

5

WAL Expressions

• Inspired by LISPs S-Expressions

• WAL programs consist of expressions
◦ Constants: 1, „hello, world!“

▪ 1 ⇒ 1

◦ Symbols: var1, var2
▪ var1 ⇒ e.g. 5

◦ Lists: (1 2 3)

◦ Operators: (+ 1 2 var1) ⇒ 8

◦ User functions: (defun foo [bar] …) (foo 5)

◦ Waveform signals: Top.module.data_o ⇒ ?

6

Accessing Waveform Data

• What is the result of evaluating a signal?

• Depending on:
◦ Loaded waveform

◦ Timepoint in the waveform

• Move index using (step) function

(step 6)

6: comp1.ack ⇒ 0

(step 2)

8: comp1.ack ⇒ 1

7

Timed Signal Access

• Time index can be locally modified with expr@offset syntax
◦ Example: signal@1 evaluated at INDEX + 1

◦ Signal value change: (!= signal@-1 signal)

◦ Rising clock edge: (&& (! clk@-1) clk)

• @ can be applied to every expression (not just signals)
◦ Is data larger than 5 two indices ahead?: (> data 5)@2

• @ can also be used with multiple offsets: signal@<offset1 offset2 …>
◦ (&& (> data 5)@<1 2 3 4>) ⇒ (&& (> data 5)@1 (> data 5)@2 …)

8

Example: Avg. Delay (1)

• Calculate avg. delay on handshaking bus

• Two states:
◦ Waiting: (&& req (! ack))

◦ Sending: (&& req ack)

• Count states

• Result = |waiting| / |sending|

(whenever clk
… always evaluated when clk = 1 …)

9

Example: Avg. Delay (2)

• Calculate avg. delay on handshaking bus

• Two states:
◦ Waiting: (&& req (! ack))

◦ Sending: (&& req ack)

• Count states

• Result = |waiting| / |sending|

(3+2+1+2) / 4 = 8/4 = 2

(whenever clk
(when (&& req (! ack)) (inc wait))
(when (&& req ack) (inc packets)))

(print (/ wait packets))

10

Example: Avg. Delay (3)

• HW designs ideal for writing generic code!

• Generic expressions with groups

• Expression evaluated in each group

• #signal expanded to full name

(in-groups (groups "req" "ack")
(whenever clk
(when (&& #req (! #ack)) (inc wait))
(when (&& #req #ack) (inc packets))))

(print (/ wait packets))

((3+2+1+2) + (4+2+1)) / 7 = (8 + 7) / 7 = 15/7  2.1

(groups “req” “ack”) ⇒ (comp1. comp2.)

11

Other WAL Features

• Data Structures

◦ Lists:
▪ (first list), (second list), (rest list), …

▪ list[i], list[h:l]

▪ Fold, fold/signal , map, for …

◦ Hashmaps:
▪ (geta symbol key1 key2 …)

▪ (seta symbol key1 key2 … data)

• Extracting bits from signals

◦ signal[i], signal[h:l]

• Finding indices at which condition is true

◦ (find cond) => (40 56 102 …)

• WAL as a compilation target from other languages

12

Example Applications (1)

Basic block/CFG extraction VexRiscv Pipeline Visualization

13

Example Applications (2)

Interactive Debugging REPL Throughput, Latency on AXI bus

14

Conclusion

• Waveform viewing is highly manual

• WAL enables programmable waveform analysis
◦ Data aggregation

◦ Data visualization

◦ Complex queries

• WAL availability
◦ GitHub: https://github.com/ics-jku/wal

◦ Soon also on PyPi

https://github.com/ics-jku/wal

