
Accelerate SAT-based ATPG via Preprocessing and New
Conflict Management Heuristics

Junhua Huang Hui-Ling Zhen Naixing Wang

Mingxuan Yuan Hui Mao Yu Huang Jiping Tao

⚫ Introduction of SAT-based ATPG

⚫ Research Background on SAT-based ATPG

⚫ Our New Framework

⚫ Experimental results

⚫ Conclusions

Outline

⚫ Introduction of SAT-based ATPG

⚫ Research Background on SAT-based ATPG

⚫ Our New Framework

⚫ Experimental results

⚫ Conclusions

Outline

Introduction of SAT-based ATPG

⚫ Several structural heuristics have been proposed for ATPG scenarios:

➢ For instance, D-algorithm, PODEM, etc.

➢ Core idea: Brach and bound algorithm

➢ Main procedure:

① Activate the fault

② Forward propagation

③ Perform backward implication to satisfy J-frontier

④ Check consistency, if not, backtrack and re-make decision

⑤ Satisfy all objectives and return the test pattern, or prove untestable

Introduction of SAT-based ATPG

⚫ Boolean Satisfactory (SAT) is a robust alternative for conventional algorithms:

○ There have also been many SAT engines.

➢ PASSAT, TG-Pro, TI-GUAN, etc.

○ Two main steps in SAT-based ATPG

➢ Circuit-to-CNF transformation:

• Conjunctive Normal Form (CNF) is the basic format of modern SAT solver

• Two parts of CNF: circuit part & fault information (e.g., D-chain path)

➢ Solve the corresponding CNF expression

○ Solving SAT is also a branch-and-bound algorithm.

○ Modern SAT solver is also conflict-driven.

Introduction of SAT-based ATPG

⚫ Several Incremental algorithms have been proposed for CNF generation.

⚫ SAT is based on symbolic computation, solution of part CNF can help.

Incremental SAT-based Engine.
A kind of incremental Fanin method.
Finding a solution is enough for SAT instance

Incremental UNSAT-based Engine.
A kind of incremental Fanout method.
More and more quickly to find conflicts.

⚫ Introduction of SAT-based ATPG

⚫ Research Background on SAT-based ATPG

⚫ Our New Framework

⚫ Experimental results

⚫ Conclusions

Outline

⚫ Recent SAT-based ATPG works are ALL on transformation methods.

➢ Their core idea is to embed more and more fault information in CNF

➢ Reason:

① SAT formula losses the structural information.

② More information can improve solving efficiency.

③ SAT solver can be more and more quickly in modern days.

Research Background on SAT-based ATPG

⚫ What is the real bottleneck for SAT applying for industrial ATPG?

⚫ Bottleneck 1: In many cases, Circuit-to-CNF transformation time is much larger than solving.

⚫ Taking one industrial circuit as an example, the comparison on generation time and solving time is below.

⚫ It is found that generation time is really much more larger than solving.

Research Background on SAT-based ATPG

Horizontal axis: fault index
Vertex axis: generation or solving time
(Unit: microseconds)

⚫ Decreasing the generation time is real bottleneck.

⚫ Bottleneck 2: Generation and solving are two independent modules.

⚫ Solving friendly? Not only adding clauses.

⚫ Examples: If we can have a better order of different variables, solving performance can be improved.

Research Background on SAT-based ATPG

Horizontal axis: fault index
Vertex axis: solving time
(Unit: seconds)

⚫ Solving friendly may also means for better rank, better decision, better etc.

⚫ Introduction of SAT-based ATPG

⚫ Research Background on SAT-based ATPG

⚫ Our New Framework

⚫ Experimental results

⚫ Conclusions

Outline

Our New Framework

① Input netlist and construct circuit graph

➢ Circuit graph is a DAG, paving for the following graph algorithm

② A new preprocessing algorithm

➢ For simplification

③ Ordered Incremental Circuit-to-CNF generation

➢ Ranking gates can help to be solving friendly.

④ Different solving methods for CNF solving.

➢ Less on the threshold: Solving directly.

➢ Larger than the threshold: Cube and Conquer solving method.

Our New Framework
Three main steps for preprocessing:

① Simulation:

a) Random patterns are for PIs in AIG.

b) If their outputs are same, there is a

higher probability to be equal

② SAT sweeping.

a) Prove equality.

b) If so, merge the nodes for simplification

③ Re-simulation for following decreasing.

④ Hold on the loop, until reach the threshold.

Our New Framework Incremental CNF generation way, and the difference is

in ordering gates:

① Initialization with a doubly linked list, in which the

initial literal ordering is consistent with the pin

ordering during fault propagation from PIs to POs.

Each variable has an initial score.

② We increases the score of a variable incrementally by

1 when it appears in a newly learnt conflict.

③ The core is decreased periodically according to the

decision level of learnt conflicts

④ All literals are ranked via the scores, and the decision

tree would be branched with the largest score.

Our New Framework Three steps for relatively large instance:

① Partition CNF into different sub-CNFs, each of which

corresponds to a FFR as well as its related logic cone

in fault propagation.

② Solving cubes and return conflicts for looking-ahead.

a) One or several sub-CNFs are first solved.

b) If one of the sub-CNF is UNSAT, we will stop the

computation and the fault is untestable.

c) Otherwise, it would return partial assignments and

learnt conflicts.

③ Solve the residual CNF based partial assignment and

learnt conflicts.

⚫ Introduction of SAT-based ATPG

⚫ Research Background on SAT-based ATPG

⚫ Our New Framework

⚫ Experimental results

⚫ Conclusions

Outline

Experimental Setup

⚫ Benchmarks: Hisilicon industrial circuits

⚫ Baselines:

a) Original SAT-based ATPG engine: TG-Pro.

b) Original Incremental SAT-based ATPG engine.

c) Commercial tool: structural heuristics

⚫ Hard-to-detect stuck-at faults and leading-edge sequential faults.

a) First round: Given by structural heuristics, given backtrack limits

b) Second round: Different SAT-based methods.

Experimental Results

Our new approach:

◆Compare to TG-Pro: reduce 94.7%

◆Compare to incremental TG-Pro: reduce 87.9%

◆Compare to the commercial tool, reduce 53.7%.

◆ Our new approach can reach full coverage.
◆ Compare to commercial tool: improve the

successful rate of solving hard-to-detect faults
by 89.67%.

Experimental Results

Experimental Results

Circuit-to-CNF generation time for redundant faults (left) and aborted faults (right) can be reduced.

Experimental Results

New CNF solving time for redundant faults (left) and aborted faults (right) can also be reduced.

Our method can be merged into any SAT solver.

Experimental Results

Preprocessing for redundant faults (left) and aborted faults (right) can also be helpful.

⚫ Introduction of SAT-based ATPG

⚫ Research Background on SAT-based ATPG

⚫ Our New Framework

⚫ Experimental results

⚫ Conclusions

Outline

Conclusions

⚫We can have more efficient SAT-based ATPG frameworks.

○ Circuit-to-CNF generation is the real bottleneck of industrial applications of SAT-based ATPG

○ make good use of some methods from logic synthesis, for CNF reduction.

○ Joint optimization from the circuit structure to CNF solving can help.

○ Solving methods like cube-and-conquer can work better by considering the structure

Accelerate SAT-based ATPG via Preprocessing and New
Conflict Management Heuristics

Junhua Huang Hui-Ling Zhen Naixing Wang

Mingxuan Yuan Hui Mao Yu Huang Jiping Tao

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

