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Parasitic extraction…why?

• In ICs, parasitic devices are the capacitors, resistors, and inductors that aren’t 
included in the original circuit design but exist due to the non-ideal nature of the 
interconnect wires.

• The parasitic devices cause/impact:
• Extra power consumption.

• Delay.

• Noise margin (can cause logic failures).

• Increase IR Drop (on the power supply).

• Increase signal noise.

• Power distribution. 
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Parasitic extraction…why?

• In ICs, parasitic devices are the capacitors, resistors, and inductors that aren’t 
included in the original circuit design but exist due to the non-ideal nature of the 
interconnect wires.
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Middle End OF Line (MEOL)

• The middle end of line (MEOL) represents the interconnects around 
the device region. The MEOL parasitic capacitances are not part of the 
device models (e.g., BSIM).

• MEOL parasitic capacitances have a major 
impact on a device performance, 
especially in advanced process nodes (i.e., 
finfets).
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Parasitic capacitance extraction methods

• The parasitic extraction has three main Methods:

• Numerical Methods (aka field-solvers): 

Use Laplace formula to get the parasitic value by using (FEM, FDM, BEM,…). 

The most accurate but the worse performance.

• Analytical Methods:

Use physical formulas to calculate the parasitic effects. 

• Empirical and semi-analytical Methods: 

Use pattern matching, curve fitting and lookup tables. (commercial rule-based).



Rule-based capacitance extraction 

• The Extraction Flow is mainly divided into two main phases:
• Calibration (pre-characterized library).

• Layout parasitic extraction.
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Rule-based capacitance extraction 

• The 2.5D extraction aims to:

1. Fracture into cross-sections.

2. Pattern matching.

3. Capacitance calculations.
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Problem definition

• In advanced process nodes, the interconnect
parasitic effects dominate the overall circuit
performance requiring more accurate parasitic
models.

• The main problems of MEOL in rule-based
extraction flows:
• Pattern mismatches
• Limited pattern coverage.

[1]A. Naeemi, C. Pan, A. Ceyhan, R. M. Iraei, V. Kumar, and S. Rakheja, “BEOL scaling limits and next generation 

technology prospects,” in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), Jun. 2014, pp. 1–6. doi: 

10.1145/2593069.2596672

[2] G. Bell, “Growing challenges in nanometer timing analysis,” EE Times, Oct. 18, 2004.

130-90nm

The impact of interconnect parasitic on overall 
circuit delay [1] and [2]



Machine Learning MEOL Compact Models 

• Compact machine learning models that predict MEOL parasitic
capacitances efficiently:
• They predict different 3D fringing capacitances.

• They mitigate pattern mismatches.

• They have a high pattern coverage.

• Geometry-based pattern representation to represent MEOL layout
patterns.

• Two machine learning methods are used and compared to each other:
• Neural networks.

• Support vector regressions.



Machine Learning MEOL Compact Models 

The implementation process of MEOL parasitic capacitance models is shown in this slide:
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Machine learning MEOL models: 
Training patterns

• Training dataset: 25K MEOL patterns.

• Generation method: 

• Obtained from several real designs including DAC, cache memory,…

• Random patterns from (1X to 10X) of minimum technological dimensions.

• Important Factors:

• Multi-Finger devices.

• Multi-Dielectric Stacks.
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Machine learning MEOL models: 
Training patterns

• Multi-dielectric Environment:

Problem:
• Each device and corresponding MEOL interconnects have specific surrounding 

dielectrics. Such dielectrics have different characteristics (e.g, dielectric constant, 
thickness, ….

Solution:
• Each process technology must have its own models.
• Each device type must have its own models.
• In other words, there is a model per device per process 

technology node.



Machine learning MEOL models:
Feature Extraction

• The inputs of parasitic capacitance machine learning models should introduce:
• Geomatical information of the 2D cross-section pattern.

• Aggressor polygons.

• Victim polygons.
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Machine learning MEOL models:
Feature Extraction (Steps)

• Fracture MEOL polygons.

• Create a feature vector for each MEOL layer. 

• Create a feature vector for Vias and Fins.

• Merge the vectors and create a final input feature vector.



Machine learning MEOL models:
Feature Extraction (Fracture polygons)

• The purpose is to fracture the polygons into quadrilateral shapes.

• The fracturing is done in x-direction (perpendicular to gate), then in y-direction 
(parallel to gate).

Vector = [layer1; layer2; layer3; …] polygons

Fracturing in x-direction
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Machine learning MEOL models:
Feature Extraction (Feature Vector)

• Each MEOL layer is represented by its vertices.

Vector (layer) = [center, 1st right, 1st left, 2nd right, 2nd left, …] polygons

Gate/poly feature Vector =

[x1, y1, x2, y2, x3, y3, x4, y4 For P1: Center polygon

, x1, y1, x2, y2, x3, y3, x4, y4 For P2: 1st right polygon
, x1, y1, x2, y2, x3, y3, x4, y4 ] For P3: 1st left polygon
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Machine learning MEOL models:
Feature Extraction (Feature Vector for Vias and Fins)

• The vias are represented by clusters.

• The fins are represented by fin width and fin spacing.

C1: Via Cluster (right) 

Via feature vector =

[ x1,y1, via count(x), via count (y), via width, via spacing For C1

, x2,y2, via count(x), via count (y), via width, via spacing] For C2

C2: Via Cluster (left)
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Machine learning MEOL models:
Feature Extraction (Input Feature Vector)

Vector1/2/3 = [layer1;  layer2;  layer3;   vias;  fins]  geometries

Vector (layer) = [center; 1st right; 1st left; 2nd right; 2nd left; …] polygons (vertices)

Vector (via) = [cluster center; via count (x-direction); via count (y-direction); width; spacing]
Vector (fin) = [fin width; fin spacing]

Final input feature vector = [Vector1, Vector2, Vector3]
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Machine learning MEOL models:
Model’s Creation (Neural networks)

Whole 

pattern

Each vector size = m
Feature Vectors

Merge

Input vector size (n)= 3 * m

Neurons = n n/4 n/4 n/5

Activation = tanh tanh relu

Cgs

Target Capacitance = gate to source coupling (Cgs)

Aggressors

Victims

Parameter Value

Training set 80% (20K patterns)

Test set 20% (5K patterns)

Batch size 500

Validation set 10% (2K patterns)

Loss function Mean square error

Learning rate 1e-3

Batch normalization YES

Epochs 500

Optimizer Adam

•Training Hyper Parameters of MEOL Parasitic Capacitances 

NN Models.
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Machine learning MEOL models:
Model’s Creation (Neural networks)

28nm  (MOSFET) 7nm (FINFET)

Input vector size (n) 696 681

Architecture Three hidden layers 
(174, 174, 140 neurons, respectively)

Three hidden layers 
(170, 170, 136 neurons, respectively)

Training accuracy (MSE) 3.7e-3 4.3e-3

Test accuracy (MSE) 5.2e-3 5.8e-3

Training Time 3.6 hours for two models (1.8 hours per model) 13.8 hours for 6 models (2.3 hours per model)

Comment MOS transistors may contain a lot of irregular 
structures, such as T shaped, I shaped, M1 over 
gate. However, it contains a smaller number of 
capacitance components.

FinFET structures are usually regular. However, 
They contain more 3D fringine parasitic 
capacitance components.

Training on: Intel Xeon(R) E5- 2680, 2.50GHz with 8 CPUs and 16G of RAM



Machine learning MEOL models:
Model’s Creation (Support vector regression)

28nm 7nm

Kernel Kernel: radial basis function (RBF) Kernel: radial basis function (RBF)

Regularization (C) 8 8

Epsilon 0.1 0.1

Gamma 0.3 0.3

Training accuracy (MSE) 4.1e-3 5.7e-3

Test accuracy (MSE) 6.7e-3 7.1e-3

Training Time 1.7 hours for two models (0.85 hours per 
model)

6.18 hours for 6 models (1.03 hours per 
model)

Intel Xeon(R) E5- 2680, 2.50GHz with 8 CPUs and 16G of RAM



Experimental results: Test coverage

28nm 7nm

Test coverage ~15M devices 
(RO, VCO, and DAC)

~20M devices 
(RO, SRAM, and PLL clock generator)

Runtime (per pattern) NN: 2.43ms
SVR: 2.18ms
Rule-based: 2.52ms
Field-solver 3D: 240ms

NN: 2.61ms
SVR: 2.4ms
Hybrid: 235ms
Field-solver 3D: 264ms

Intel Xeon(R) E5-2680, 2.50GHz, 1 CPU, and 16G of RAM

• Comparison is relative to 3D field-solver
• In 28nm, the comparison covered three methods: the proposed NN models , SVR models, and a rule-based tool.
• In 7nm, the comparison covered three methods: the proposed NN models , SVR models, and a Hybrid tool.
The hybrid tool uses rule-based engine to extract interconnects, whereas it uses a field-solver to extract MEOL.



Relative errors (28nm)
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Relative errors (7nm)
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Summary 

• The MEOL parasitic capacitance extraction using rule-based methods suffers from:
• Pattern mismatches.
• Pattern coverage.

• Set of machine learning compact models are implemented to:
• Extract MEOL parasitic capacitances efficiently.
• Reduce pattern mismatches with MEOL extraction.
• Improve pattern coverage in MEOL extraction.

• A novel geometry-based pattern representation is proposed to represent MEOL patterns.

• Experimental results show significant accuracy and runtime improvements.
• The models were tested on more than 35M devices of 28nm and 7nm process technology nodes.
• More than 95% of the extracted capacitances have relative errors < 5%
• They are ~100X faster than field solvers and hybrid tools.
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