

Heterogeneous Memory Architecture Accommodating Processing-In-Memory on SoC For AloT Applications

Kangyi Qiu, Yaojun Zhang, Bonan Yan, Ru Huang Institute of Artificial Intelligence, Peking University, Beijing, China School of Integrated Circuits, Peking University, Beijing, China Pimchip Technology Co., Ltd., Beijing, China corresponding authors email: {bonanyan, ruhuang}@pku.edu.cn DMotivation

□Heterogeneous memory architecture

DHMA tensor mapping approach

DExperiment results

□Summary & prospective

Motivation: Data Movement is Expensive

Motivation: Exponential Growth of Computing Power Demand

GEMM: general matrix-multiplication

 $\begin{bmatrix} a_{00} & \cdots & a_{0K} \\ \vdots & \ddots & \vdots \\ a_{M0} & \cdots & a_{MK} \end{bmatrix} \times \begin{bmatrix} b_{00} & \cdots & b_{0N} \\ \vdots & \ddots & \vdots \\ b_{k0} & \cdots & b_{KN} \end{bmatrix} = \begin{bmatrix} c_{00} & \cdots & c_{0n} \\ \vdots & \ddots & \vdots \\ c_{m0} & \cdots & c_{mn} \end{bmatrix},$

 $C_{ii} = \sum A_{ik} \cdot B_{ki}$; Output = Input * weight

CNN: Convolutional Neural Networks

 a_{M0}

AloT: artificial intelligence and Internet of things

Inference:

PIM + mapping approach change inputs, fixed weights reduce data movement

Motivation: Conventional Intelligent SoC may not Efficient

Conventional Intelligent SoC for AloT Applications

□Heterogeneous memory architecture (HMA)

- □The first architecture to clarify how to interface PIM to off-the-shelf SoC
- □Possess both PIM memories and traditional memories
- □simplifying the program interface,
- **DHMA** tensor mapping approach
 - □ the software-to-hardware optimization
 - □Partition tensors and deploy the GEMM tasks to the HMA
 - □ Provide a hardware-agnostic way to exploit PIM hardware
 - □ be used as a pre-design spec estimation

Heterogeneous memory architecture: PIM Standalone Accelerators

challenge: Compilation and deployment of software onto PIM hardware

Heterogeneous memory architecture: Overall HMA Structure

Heterogenous Memory Architecture

HMA: Data Movement and Computing in Heterogeneous Memory

HMA: Address Assignment

- The total width of the address is 32bit.
- Each 64MByte forms as a block.
- Different address widths and memory sizes will lead to different division methods

HMA: Data Transportation

HMA tensor mapping approach: Visualization of the Mapping Approach

HMA tensor mapping approach: Instruction List

HMA tensor mapping approach: Pseudo Code Optimization

HMA tensor mapping approach: Overall Process

$$\begin{array}{c} RT_{classic} = (2+1+1) \cdot m \cdot n \cdot k = 4 \cdot m \cdot n \cdot k \\ \hline \mbox{Classical calculation} \\ \mbox{formula of Memory} \\ \mbox{Access Frequency} \\ RT_{PIM} = 6 \cdot parRowA \cdot parColA \cdot parColB \\ \mbox{where } parRowA = m \\ parColA = k/length(input_{col}), \\ parRowB = k/length(PIM_{row}), \\ parColB = n/length(PIM_{col}) \\ \mbox{where } parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot (2+4 \cdot parRowA) \\ \hline \mbox{RT}_{opt} = parRowB \cdot parColB \cdot parRowB \cdot parColB \cdot parRowB \cdot parColB \cdot parRowB \cdot parColB \cdot parRowB \cdot parRo$$

Experiment results: Compare Latency

Experiment results: Area and Power Efficiency

	HMA (this work)	PUMA [10]
Area (Unit: mm ²)		
PIM Memory	2.25	
Controller and Bus	0.004	1.82
Overall	2.254	4.07
Power of On-Chip Interconnection (Unit: mW)		
Controller and Bus	1.07	445

The overall area: PUMA Save 44.6% HMA

peripheral circuit active power reduction: PUMA

HMA

416 times

Experiment results: DNN Acceleration Analysis

select 6 DNNs to compare the acceleration by HMA and the HMA tensor mapping approach

Proposed a Heterogeneous Memory Architecture for improving the efficiency of PIM on conventional small-scale embedded SoC.

□Proposed a mapping algorithm to better exploit PIM's acceleration.

DExplored the power consumption and operation latency

Great guidance for top-level software-hardware codesigns for PIM-related SoC design in its early design stages.

Thank you!

Kangyi Qiu