
Heterogeneous Memory Architecture
Accommodating Processing-In-Memory

on SoC For AIoT Applications

Kangyi Qiu, Yaojun Zhang, Bonan Yan, Ru Huang

Institute of Artificial Intelligence, Peking University, Beijing, China

School of Integrated Circuits, Peking University, Beijing, China

Pimchip Technology Co., Ltd., Beijing, China

corresponding authors email: {bonanyan, ruhuang}@pku.edu.cn

1

Outline

Motivation

Heterogeneous memory architecture

HMA tensor mapping approach

Experiment results

Summary & prospective

2

Motivation: Data Movement is Expensive

storage and computing are separated

computing power demand VS memory performance

Data movement is expensive

3

Reduce data movement

Processing in-memory(PIM)

Source: AMD, Y.-H. Chen, JSSCC,2017; Amir Gholami, et al., https://github.com/amirgholami/

Motivation: Exponential Growth of Computing Power Demand

4

𝑎00 ⋯ 𝑎0𝐾
⋮ ⋱ ⋮

𝑎𝑀0 ⋯ 𝑎𝑀𝐾
×

𝑏00 ⋯ 𝑏𝑜𝑁
⋮ ⋱ ⋮
𝑏𝑘0 ⋯ 𝑏𝐾𝑁

=

𝑐00 ⋯ 𝑐0𝑛
⋮ ⋱ ⋮

𝑐𝑚0 ⋯ 𝑐𝑚𝑛

,

𝐶𝑖𝑗 = σ𝐴𝑖𝑘 ∙ 𝐵𝑘𝑗 ; Output = Input * weight

Inference:

PIM + mapping approach

change inputs, fixed weights

reduce data movement

AIoT: artificial intelligence

and Internet of things

CNN: Convolutional Neural Networks

GEMM: general matrix-multiplication

Yann LeCun, et al., IEEE, 1998

Motivation: Conventional Intelligent SoC may not Efficient

5

Have been researched

Circuit level

Programmable architecture

To be explored

Interface PIM into SoC (system-on-chip)

Reduce the difficulty of compilation

Major Contributions of this paper

Heterogeneous memory architecture (HMA)

The first architecture to clarify how to interface PIM to off-the-shelf SoC

Possess both PIM memories and traditional memories

simplifying the program interface,

HMA tensor mapping approach

the software-to-hardware optimization

Partition tensors and deploy the GEMM tasks to the HMA

Provide a hardware-agnostic way to exploit PIM hardware

be used as a pre-design spec estimation

6

Heterogeneous memory architecture: PIM Standalone Accelerators

7

I=VW

V: the stream-in inputs

W: the data stored in PIM

I: the computational results

Two modes

challenge: Compilation and deployment of software onto PIM hardware

Heterogeneous memory architecture: Overall HMA Structure

8

PIM standalone accelerators

extra customized instructions and
shared memory assignments

attach PIM on SoC the same
way as traditional memories

Simplify the program interface

HMA: Data Movement and Computing in Heterogeneous Memory

9

• input/output buffers to cache the input/output data

• PIM can access the data in the PIM input buffer

• CPU instructs PIM to be programmed

HMA: Address Assignment

• The total width of the
address is 32bit.

• Each 64MByte forms
as a block.

• Different address
widths and memory
sizes will lead to
different division
methods

10

HMA: Data Transportation

Conclusion:

the common used AHB can handle
the PIM inputs and outputs without

additional congestion or
interconnection buffering

11

prerequisite:

Can afford adequate bandwidth?

experiment:

Case A, Case B

more PIM memory arrays require a
higher data transfer rate

HMA tensor mapping approach: Visualization of the Mapping Approach

12

divide matrix

linear scheduling
instructions

instruct PIM to
perform operations

HMA tensor mapping approach: Instruction List

13

LD.I(x, y)

LD.W(x, y)

SD.R(x, y)

SD.M

SD.V

LD.O

HMA tensor mapping approach: Pseudo Code Optimization

14

traditional GEMM HMA tensor mapping approach

Method:

fix weight matrix W,

change input matrix V

C=A*B → multiple I=VW

Appropriate division and
scheduling → Reduce

data movement

HMA tensor mapping approach: Overall Process

15

GEMM
programming

language

linear scheduling

instructions

instructs PIM to

perform in-memory

GEMM

HMA tensor mapping approach: Memory Access Frequency

16

Classical calculation

formula of Memory

Access Frequency

Memory Access

Frequency after using

HMA architecture

using multiple PIM cores and

the proposed mapping method

Experiment results: Compare Latency

Baseline

PIM_naive

PIM_optimized

Baseline/PIM_opt

Baseline/PIM_naive

baseline

HMA without optimization approach

HMA + mapping approachImprove 430 times

HMA + mapping approachImprove 11 times

17

Experiment results: Area and Power Efficiency

18

PUMA HMASave 44.6%The overall area:

PUMA HMA416 timesperipheral circuit active power reduction:

Experiment results: DNN Acceleration Analysis

19

Base

PIM

PIM_optimized

select 6 DNNs to compare the acceleration by HMA and the HMA tensor mapping approach

Summary & Prospective

Proposed a Heterogeneous Memory Architecture for improving the
efficiency of PIM on conventional small-scale embedded SoC.

Proposed a mapping algorithm to better exploit PIM’s acceleration.

Explored the power consumption and operation latency

Great guidance for top-level software-hardware codesigns for PIM-related
SoC design in its early design stages.

20

21

Thank you!

Kangyi Qiu

