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Motivation: Data Movement is Expensive

storage and computing are separated

computing power demand VS memory performance

Data movement is expensive
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Reduce data movement

Processing in-memory(PIM)

Source: AMD, Y.-H. Chen, JSSCC,2017; Amir Gholami, et al., https://github.com/amirgholami/



Motivation: Exponential Growth of Computing Power Demand
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𝐶𝑖𝑗 = σ𝐴𝑖𝑘 ∙ 𝐵𝑘𝑗 ; Output = Input * weight

Inference:

PIM + mapping approach 

change inputs, fixed weights   

reduce data movement

AIoT: artificial intelligence

and Internet of things

CNN: Convolutional Neural Networks

GEMM: general matrix-multiplication

Yann LeCun, et al., IEEE, 1998



Motivation: Conventional Intelligent SoC may not Efficient
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Have been researched

Circuit level

Programmable architecture

To be explored

Interface PIM into SoC (system-on-chip)

Reduce the difficulty of compilation



Major Contributions of this paper

Heterogeneous memory architecture (HMA)

The first architecture to clarify how to interface PIM to off-the-shelf SoC

Possess both PIM memories and traditional memories

simplifying the program interface,

HMA tensor mapping approach

the software-to-hardware optimization

Partition tensors and deploy the GEMM tasks to the HMA

Provide a hardware-agnostic way to exploit PIM hardware

be used as a pre-design spec estimation
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Heterogeneous memory architecture: PIM Standalone Accelerators
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I=VW

V: the stream-in inputs

W: the data stored in PIM

I: the computational results

Two modes

challenge: Compilation and deployment of software onto PIM hardware



Heterogeneous memory architecture: Overall HMA Structure

8

PIM standalone accelerators 

extra customized instructions and 
shared memory assignments

attach PIM on SoC the same 
way as traditional memories 

Simplify the program interface



HMA: Data Movement and Computing in Heterogeneous Memory
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• input/output buffers to cache the input/output data

• PIM can access the data in the PIM input buffer

• CPU instructs PIM to be programmed



HMA: Address Assignment

• The total width of the 
address is 32bit. 

• Each 64MByte forms 
as a block.

• Different address 
widths and memory 
sizes will lead to 
different division 
methods
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HMA: Data Transportation

Conclusion:

the common used AHB can handle 
the PIM inputs and outputs without 

additional congestion or 
interconnection buffering
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prerequisite:

Can afford adequate bandwidth?

experiment:

Case A, Case B

more PIM memory arrays require a 
higher data transfer rate



HMA tensor mapping approach: Visualization of the Mapping Approach
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divide matrix

linear scheduling 
instructions

instruct PIM to 
perform operations



HMA tensor mapping approach: Instruction List
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LD.I(x, y)

LD.W(x, y)

SD.R(x, y)

SD.M

SD.V

LD.O



HMA tensor mapping approach: Pseudo Code Optimization
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traditional GEMM HMA tensor mapping approach

Method: 

fix weight matrix W, 

change input matrix V

C=A*B → multiple I=VW

Appropriate division and 
scheduling → Reduce 

data movement



HMA tensor mapping approach: Overall Process
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GEMM
programming 

language

linear scheduling 

instructions

instructs PIM to 

perform in-memory 

GEMM



HMA tensor mapping approach: Memory Access Frequency
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Classical calculation 

formula of Memory 

Access Frequency

Memory Access 

Frequency after using 

HMA architecture

using multiple PIM cores and 

the proposed mapping method



Experiment results: Compare Latency

Baseline

PIM_naive

PIM_optimized

Baseline/PIM_opt

Baseline/PIM_naive

baseline

HMA without optimization approach

HMA + mapping approachImprove 430 times

HMA + mapping approachImprove 11 times
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Experiment results: Area and Power Efficiency
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PUMA HMASave 44.6%The overall area:

PUMA HMA416 timesperipheral circuit active power reduction:



Experiment results: DNN Acceleration Analysis
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Base

PIM

PIM_optimized

select 6 DNNs to compare the acceleration by HMA and the HMA tensor mapping approach



Summary & Prospective

Proposed a Heterogeneous Memory Architecture for improving the 
efficiency of PIM on conventional small-scale embedded SoC.

Proposed a mapping algorithm to better exploit PIM’s acceleration. 

Explored the power consumption and operation latency 

Great guidance for top-level software-hardware codesigns for PIM-related 
SoC design in its early design stages.
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Thank you!

Kangyi Qiu


