Delay Optimization of Combinational Logic
by AND-OR Path Restructuring

Ulrich Brenner, Anna Silvanus

January 19, 2022
27th Asia and South Pacific Design Automation Conference

AND-OR Paths as Delay-Critical Paths on Computer Chips

A combinational path on a computer chip can be translated into an AND-OR path and
optimized as such.

to t1 to t3 ty ts to i t t3 ta t5 to t1 to t3 ty fts
Part of a del itical Gates of delay-critical Inversions pushed aside via Extracted AND-OR path
art of a detay=critica path. De Morgan. with side gates.

path on a chip.

AND-OR Path Optimization

Definition (And-Or Path)

Example: g(to A (t1V (2 A (3 V ta)))): to &1

AND-OR Path Optimization Problem

Arrival times: a(to) € N o t a(t)) eN

a(g) = max{a(to), a(t1)} + 1

Delay 7 Delay 6

Our Contributions

And-Or path optimization:

» Improved dynamic programming algorithm

> In experiments: significantly better than previous approaches and in most cases
optimum

Application in timing:

> New logic restructuring framework

» Still improves timing after classical timing-optimization (gate sizing, buffering
etc.) on recent industrial logic chips

Much Easier Case: Optimization of AND-Trees

Greedy algorithm (Huffman Coding) finds optimum solution:

Huffman Coding for Symmetric Trees

For given inputs t = (to, ..., tm—1) with arrival times a(t;), let

W(t) =22,

i

Theorem (Kraft; Huffman; Golumbic; Van Leeuwen)

For inputs t = (to, ..., tm—1) with arrival times a(t;), the Huffman Coding algorithm
constructs a binary And tree (or Or tree) on t with delay exactly [log, W(t)].
The algorithm can be implemented in linear time after sorting.

Observation

| \

Any circuit containing only 2-input gates on inputs to, ..., tm—1 with arrival times a(t;)
has delay at least [log, W(t)].

-

= [log, W(t)] is also a lower bound on the delay of any AND-OR path circuit.

Well-Known Recursive Circuit Construction

Recursively split the AND-OR path into smaller AND-OR paths plus additional logic. l

t ¢
to t1 th t3 ty tg teg t7 tg to tip t11 t/ t”
to t1 tr t3 ty ts _tg t7 tg to tio t11

Equivalent circuit obtained by a single split.

Well-Known Recursive Circuit Construction

Recursively split the AND-OR path into smaller AND-OR paths plus additional logic.

t ¢
to t1 th t3 ty tg teg t7 tg to tip t11 t/ t”

tg to tio t11

Equivalent circuit obtained by a single split.

Well-Known Recursive Circuit Construction

Recursively split the AND-OR path into smaller AND-OR paths plus additional logic. l

t/ tll
to t1 tr t3 ta ts tg t7 tg to tip t11

Circuit quality depends on used splits.

Classical approaches: Prefix circuits, e.g.,
[Sklansky, 60] [Kogge,Stone, 73], [Ladner,
Fischer, 80], [Brent,Kung82], [Rautenbach,
Szegedy, Werber, 06], [Held, Spirkl, 17b]

More general splits: e.g., [Khrapchenko, 67],
[Rautenbach, Szegedy, Werber, 03], [Grinchuk,
08], [Spirkl, 14], [Held, Spirkl, 17b]

Prefix-split recursion.

Well-Known Recursive Circuit Construction

Recursively split the AND-OR path into smaller AND-OR paths plus additional logic. l

t/ tl/
to t1 t t3 ta t5 t t7 tg to tio t11

Grinchuk’s approach B
Optimize extended AND-OR paths.

= [Grinchuk, 08], [Commentz-Walter, 79]:

Optimum depth up to an additive
constant. extended AOP

[Grinchuk, 08] recursion.

Extended AND-OR Paths

Definition

t3 ts t7 to tio ti1 ti2 43 to ty ty tg t7 tg tg

Alternating Split with an Odd Prefix

odd prefix odd prefix
R G PR R
to ta t4 ts t t7 tg to tio tin t12 113 to to ty t5 te t7 tg tg tip t11 ti2 ti3

Alternating Split with an Odd Prefix

Alternating Split with an Even Prefix

even prefix even prefix
—_— —_——
to tr tg ts te t7 tg o tio tp to ta ts te t7 tg to tio

Alternating Split with an Even Prefix

Split Options in Our Dynamic Program

Possible Splits

Simple Dynamic Program for AND-OR Path Optimization

Input: Inputs t = (to, ..., tm—1) with arrival times a(t;) € N.
Output: A Boolean circuit computing f(t).

for /| + 1 to m do

foreach 0 </ < j < k < m with j — i even s.t. ¢;;« has / inputs do

if k€ {j,j+1} then

Apply Huffman coding to construct an optimum circuit G« for ¢;j« and an
optimum circuit C7; , for @7 .

else

C := list of candidate circuits for ¢; ; « arising from applying any valid split (1), (2),

@3).

Ci jk := delay-minimum circuit among C.

| Gk i= dual circuit of G k.

return Co 0, m—1

Simple Dynamic Program — Guarantees

» All mentioned approaches are generalized by our algorithm.

» All other mentioned theoretical guarantees also hold.

Theorem

Example Solution of Simple DP

Problem with Simple DP

Problem with Simple DP

split 1

split 2

split 3

split 4

Undetermined circuits

Definition

An undetermined circuit with weight 22 4 2% + 2% = 36.

Given an undetermined circuit C, we can construct a Boolean circuit using AND2 and
OR2 gates only that computes the same Boolean function as C with delay at most

[log, (weight(C))].

Apply Huffman coding with the predecessors of out as inputs. O
2 3

Merging Undetermined Circuits

(tiy. .. tj-1) (L, -5 tj2n) (tjr2x415 -+ > t) (ti. - tjio1) (L, t)
2 1 1 1 0 2 2 1 3 4 2 0 1 2 1 1 1 0 2 2 1 3 4 2 0 1
to t t t3 t4 ts tg t7 tg to tio tin t2 to t tr t3 ty ts tg t7 tg to tio tin ti2

out(Cr), Bijj+ox out(G), df41 jyani1k

U Cogbw)k out(C), ¢ijk

Final Dynamic Program for AND-OR Path Optimization

Input: Inputs t = (to, ..., tm—1) with arrival times a(t;) € N.
Output: A Boolean circuit computing f(t).

for /| < 1 to m do

foreach 0 < j < j < k < m with j — i even even s.t. ¢;j« has | inputs do

if ke {j,j+ 1} then

Apply Huffman coding to construct an optimum circuit A; j ; for ¢;;; and an optimum
circuit Oy for d);-k’j’j.

else

C := list of candidate undetermined circuits for ¢; j « arising from applying any valid
split (1), (2) followed by a merge operation.

Aijk = weight-minimum circuit among C with output gate AND.
0 j,k = weight-minimum circuit among C with output gate OR.

C := weight-minimum undetermined circuit among Ag,0,m—1 and Op,0,m—1.
Transform C into a circuit C’ over {AND2, OR2}.
return C’

Comparison on Instances of Artificial Testbed

» For each n € [4,28], create 1000 instances with random arrival times in the
interval [0, n].

» Compute delay difference to optimum solution

100 % 5. Bl new with undetermined circuits
Hl new without undetermined circuits
80 % N old
n
60 % A
43.3
40 % A
20 % 1 14.5
0.0 0.0 0.0 0.0 0.0 0.0 05
0% - T T T

0 (opt) 1 2 3 1
Old: Previous algorithm used in practice ([Rautenbach, et al., 2006], [Held, Spirkl, 2017])

Technology Mapping

Our logic optimization framework

For each sub-path S of P
with length at most M,y :

Has slack improved
by at least &, in last
numy, iterations?

Sort L by decreasing
estimated slack gain.

Initialize &, := Starget -

Normalize S and extract an
And-Or path S' from S.

New iteration:
Choose a critical path P.

Pop k candidates from L and
tentatively apply detailed
optimization to each of them.

Apply Algorithm 2 to S'. .
Implement netlist change C. o

Apply technology
mapping to S. {Choosc the candidate C with bcst] [Relax 5]
.

actual slack gain 6¢ seen so far.

Store S in list L of
No

restructuring candidates.

Has slack improved
by at least 6pin?

Is 8¢ > 8pin and has no
subpath slack decreased

end loop beyond P's initial slack?

Revert changes of
last preoptimization.

Experiments with the whole framework

Instances

We show the effect of the overall framework.

Results on 7nm Real-World Instances

Unit Run|WS [ps] TNS [ns]| # Gates Area Netlength WACE5| Time [s]

i init| —107 —26.1 | 22412 83%

LO | —104 —26.0 | 22431 +0.01% 0.00% 82% | 409
o init| —14 17| 38048 93 %

LO| -14 —16| 38067 +0.02% 0.00% 93% 50
i3 init | —65 —67.4 | 64230 97 %

LO | 53 572 | 642490 +0.04% +0.09% 96% | 140
4 nit| —17 11| 78193 110%

LO| -3 -0.1]| 77851 —0.28% —0.14% 110% | 230
5 init | —174 —335.4 |212210 94 %

LO | —152 3329 [212236 +0.01% +0.01% 94% | 306
6 nit| -390 —19.7 [268473 87 %

LO | 24 136 (268336 0.00% +0.03% 88% | 272
7 init| —69 —182.8 274723 95 %

LO | 55 -168.9 |274863 +0.03% +0.02% 95% | 400
;g init| —125 —656.3 [332695 92%

LO | —116 —640.9 [332787 0.00% +0.02% 92% | 253

Thank you for listening!

