Delay Optimization of Combinational Logic by And-Or Path Restructuring

Ulrich Brenner, Anna Silvanus

January 19, 2022
27th Asia and South Pacific Design Automation Conference

And-Or Paths as Delay-Critical Paths on Computer Chips

A combinational path on a computer chip can be translated into an And-Or path and optimized as such.

Part of a delay-critical path on a chip.

Gates of delay-critical path.

Inversions pushed aside via De Morgan.

Extracted And-Or path with side gates.

And-Or Path Optimization

Definition (And-Or Path)

An And-Or path on inputs t_{0}, \ldots, t_{m-1} is a Boolean formula of type

$$
\begin{aligned}
g\left(t_{0}, \ldots, t_{m-1}\right) & =t_{0} \wedge\left(t _ { 1 } \vee \left(t _ { 2 } \wedge \left(t_{3} \vee\left(t_{4} \wedge\left(\ldots t_{m-1}\right) \ldots\right)\right.\right.\right. \text { or } \\
g^{*}\left(t_{0}, \ldots, t_{m-1}\right) & =t_{0} \vee\left(t _ { 1 } \wedge \left(t _ { 2 } \vee \left(t_{3} \wedge\left(t_{4} \vee\left(\ldots t_{m-1}\right) \ldots\right) .\right.\right.\right.
\end{aligned}
$$

Example: $g\left(t_{0} \wedge\left(t_{1} \vee\left(t_{2} \wedge\left(t_{3} \vee t_{4}\right)\right)\right)\right)$:

And-Or Path Optimization Problem

$$
a(g)=\max \left\{a\left(t_{0}\right), a\left(t_{1}\right)\right\}+1
$$

The delay of a circuit C on inputs t_{0}, \ldots, t_{m-1} with arrival times $a\left(t_{i}\right) \in \mathbb{N}$ is the maximum arrival time of any node in C.

Task: Given inputs $t=\left(t_{0}, \ldots, t_{m-1}\right)$ and input arrival times a, find a circuit with minimum delay realizing an And-Or path on t using only And2 and Or2 gates.

Our Contributions

And-Or path optimization:

- Improved dynamic programming algorithm
- In experiments: significantly better than previous approaches and in most cases optimum

Application in timing:

- New logic restructuring framework
- Still improves timing after classical timing-optimization (gate sizing, buffering etc.) on recent industrial logic chips

Much Easier Case: Optimization of And-Trees

Greedy algorithm (Huffman Coding) finds optimum solution:

Huffman Coding for Symmetric Trees

For given inputs $t=\left(t_{0}, \ldots, t_{m-1}\right)$ with arrival times $a\left(t_{i}\right)$, let

$$
W(t):=\sum_{i} 2^{a\left(t_{i}\right)}
$$

Theorem (Kraft; Huffman; Golumbic; Van Leeuwen)

For inputs $t=\left(t_{0}, \ldots, t_{m-1}\right)$ with arrival times $a\left(t_{i}\right)$, the Huffman Coding algorithm constructs a binary And tree (or Or tree) on t with delay exactly $\left\lceil\log _{2} W(t)\right\rceil$.
The algorithm can be implemented in linear time after sorting.

Observation

Any circuit containing only 2 -input gates on inputs t_{0}, \ldots, t_{m-1} with arrival times $a\left(t_{i}\right)$ has delay at least $\left\lceil\log _{2} W(t)\right\rceil$.
$\Rightarrow\left\lceil\log _{2} W(t)\right\rceil$ is also a lower bound on the delay of any And-Or path circuit.

Well-Known Recursive Circuit Construction

Idea

Recursively split the And-Or path into smaller And-Or paths plus additional logic.

Equivalent circuit obtained by a single split.

Well-Known Recursive Circuit Construction

Idea

Recursively split the And-Or path into smaller And-Or paths plus additional logic.

Equivalent circuit obtained by a single split.

Well-Known Recursive Circuit Construction

Idea

Recursively split the And-Or path into smaller And-Or paths plus additional logic.

Circuit quality depends on used splits.
Classical approaches: Prefix circuits, e.g., [Sklansky, 60] [Kogge,Stone, 73], [Ladner, Fischer, 80], [Brent,Kung82], [Rautenbach, Szegedy, Werber, 06], [Held, Spirkl, 17b]

More general splits: e.g., [Khrapchenko, 67], [Rautenbach, Szegedy, Werber, 03], [Grinchuk, 08], [Spirkl, 14], [Held, Spirkl, 17b]

Prefix-split recursion.

Well-Known Recursive Circuit Construction

Idea

Recursively split the And-Or path into smaller And-Or paths plus additional logic.

Grinchuk's approach

Optimize extended And-Or paths.
\Longrightarrow [Grinchuk, 08], [Commentz-Walter, 79]: Optimum depth up to an additive constant.

[Grinchuk, 08] recursion.

Extended And-Or Paths

Definition

Given inputs $t=\left(t_{0}, \ldots, t_{m-1}\right)$, an extended And-Or path is a function of type

$$
\phi_{i, j, k}=t_{i} \wedge t_{i+2} \wedge \ldots \wedge t_{j-4} \wedge t_{j-2} \wedge g\left(t_{j}, \ldots, t_{k}\right)
$$

or

$$
\phi_{i, j, k}^{*}=t_{i} \vee t_{i+2} \vee \ldots \vee t_{j-4} \vee t_{j-2} \vee g^{*}\left(t_{j}, \ldots, t_{k}\right)
$$

with $0 \leq i \leq j \leq k<m$ and $j-i$ even.

Alternating Split with an Odd Prefix

Alternating Split with an Odd Prefix
For odd prefix length $2 \lambda+1$ with $\lambda \in\left\{0, \ldots, \frac{k-j-1}{2}\right\}$, we have

$$
\begin{aligned}
& \phi_{i, j, k}=\phi_{i, j, j+2 \lambda} \wedge \phi_{j+1, j+2 \lambda+1, k}^{*}, \quad \text { and } \\
& \phi_{i, j, k}^{*}=\phi_{i, j, j+2 \lambda}^{*} \vee \phi_{j+1, j+2 \lambda+1, k} .
\end{aligned}
$$

Alternating Split with an Even Prefix

Alternating Split with an Even Prefix

For even prefix length $2 \lambda+1$ with $\lambda \in\left\{0, \ldots, \frac{k-j-1}{2}\right\}$, we have

$$
\begin{aligned}
& \phi_{i, j, k}=\phi_{i, j, j+2 \lambda-1} \vee \phi_{i, j+2 \lambda, k} \quad \text { and } \\
& \phi_{i, j, k}^{*}=\phi_{i, j, j+2 \lambda-1}^{*} \wedge \phi_{i, j+2 \lambda, k}^{*} .
\end{aligned}
$$

Split Options in Our Dynamic Program

Possible Splits

For odd prefix length $2 \lambda+1$ with $\lambda \in\left\{0, \ldots, \frac{k-j-1}{2}\right\}$, we have

$$
\begin{equation*}
\phi_{i, j, k}=\phi_{i, j, j+2 \lambda} \wedge \phi_{j+1, j+2 \lambda+1, k}^{*}, \tag{1}
\end{equation*}
$$

for even prefix length 2λ with $\lambda \in\left\{1, \ldots, \frac{k-j}{2}\right\}$, we have

$$
\begin{equation*}
\phi_{i, j, k}=\phi_{i, j, j+2 \lambda-1} \vee \phi_{i, j+2 \lambda, k}, \tag{2}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\phi_{i, j, k}=\phi_{i, j-2, j-2} \wedge \phi_{j, j, k} . \tag{3}
\end{equation*}
$$

Previous Work [B., Hermann, 2019]
Delay bound of $\log _{2} W+\log _{2} \log _{2} m+\log _{2} \log _{2} \log _{2} m+4.3$.

Simple Dynamic Program for And-Or Path Optimization

```
Input: Inputs \(t=\left(t_{0}, \ldots, t_{m-1}\right)\) with arrival times \(a\left(t_{i}\right) \in \mathbb{N}\).
Output: A Boolean circuit computing \(f(t)\).
for \(l \leftarrow 1\) to \(m\) do
    foreach \(0 \leq i \leq j \leq k<m\) with \(j-i\) even s.t. \(\phi_{i, j, k}\) has / inputs do
            if \(k \in\{j, j+1\}\) then
            Apply Huffman coding to construct an optimum circuit \(C_{i, j, k}\) for \(\phi_{i, j, k}\) and an
                    optimum circuit \(C_{i, j, k}^{*}\) for \(\phi_{i, j, k}^{*}\).
            else
            \(\mathcal{C}:=\) list of candidate circuits for \(\phi_{i, j, k}\) arising from applying any valid split (1), (2),
                (3).
            \(C_{i, j, k}:=\) delay-minimum circuit among \(\mathcal{C}\).
            \(C_{i, j, k}^{*}:=\) dual circuit of \(C_{i, j, k}\).
return \(C_{0,0, m-1}\)
```


Simple Dynamic Program - Guarantees

- All mentioned approaches are generalized by our algorithm.
- All other mentioned theoretical guarantees also hold.

Theorem

Given Boolean input variables $t=\left(t_{0}, \ldots, t_{m-1}\right)$ with arrival times a: $\left\{t_{0}, \ldots, t_{m-1}\right\} \rightarrow \mathbb{N}$, the dynamic program computes a circuit C realizing $f(t)$ with delay at most

$$
\text { delay }(C) \leq \log _{2} W+\log _{2} \log _{2} m+\log _{2} \log _{2} \log _{2} m+4.3
$$

and can be implemented to run in time $\mathcal{O}\left(m^{4}\right)$.

Example Solution of Simple DP

Problem with Simple DP

Problem with Simple DP

Undetermined circuits

Definition

An undetermined circuit is a Boolean circuit C consisting of And and Or gates only such that all gates with the possible exception of out have fan-in two. With given input arrival times, the weight of C is

$$
\text { weight }(C):=\sum_{i=1}^{k} 2^{d_{i}}
$$

here d_{1}, \ldots, d_{k} are the arrival times at the predecessors of out.

An undetermined circuit with weight $2^{2}+2^{4}+2^{4}=36$.

Lemma

Given an undetermined circuit C, we can construct a Boolean circuit using AnD2 and Or2 gates only that computes the same Boolean function as C with delay at most $\left\lceil\log _{2}(\right.$ weight $\left.(C))\right\rceil$.

Proof.

Apply Huffman coding with the predecessors of out as inputs.

Merging Undetermined Circuits

Final Dynamic Program for And-Or Path Optimization

```
Input: Inputs \(t=\left(t_{0}, \ldots, t_{m-1}\right)\) with arrival times \(a\left(t_{i}\right) \in \mathbb{N}\).
Output: A Boolean circuit computing \(f(t)\).
for \(l \leftarrow 1\) to \(m\) do
        foreach \(0 \leq i \leq j \leq k<m\) with \(j-i\) even even s.t. \(\phi_{i, j, k}\) has / inputs do
            if \(k \in\{j, j+1\}\) then
                    Apply Huffman coding to construct an optimum circuit \(A_{i, j, j}\) for \(\phi_{i, j, j}\) and an optimum
                            circuit \(O_{i, j, j}\) for \(\phi_{i, j, j}^{*}\).
        else
            \(\mathcal{C}:=\) list of candidate undetermined circuits for \(\phi_{i, j, k}\) arising from applying any valid
                    split (1), (2) followed by a merge operation.
                            \(A_{i, j, k}:=\) weight-minimum circuit among \(\mathcal{C}\) with output gate And.
                            \(O_{i, j, k}:=\) weight-minimum circuit among \(\mathcal{C}\) with output gate Or.
\(C:=\) weight-minimum undetermined circuit among \(A_{0,0, m-1}\) and \(O_{0,0, m-1}\).
Transform \(C\) into a circuit \(C^{\prime}\) over \(\{A n D 2\), Or2\}.
return \(C^{\prime}\)
```


Comparison on Instances of Artificial Testbed

- For each $n \in[4,28]$, create 1000 instances with random arrival times in the interval $[0, n]$.
- Compute delay difference to optimum solution

Old: Previous algorithm used in practice ([Rautenbach, et al., 2006], [Held, Spirkl, 2017])

Technology Mapping

Idea

- Virtual timing model
- Objectives: slack, area and netlength
- Dynamic program: Merge gates locally and apply De Morgan's laws.
- On instances with few cycles: FPTAS
- Applied after path restructuring and SymTree optimization

Our logic optimization framework

Experiments with the whole framework

Instances

- Industrial 7nm logic chips from IBM
- Between 22k and 332k gates.
- All instances result from a timing-driven placement followed by timing-optimization steps including gate sizing and buffering.
- Classical timing optimization cannot improve these instances any more.

We show the effect of the overall framework.

Results on 7nm Real-World Instances

Unit	Run \|	WS [ps]	TNS [ns]\|	\| \# Gates	Area	Netlength	WACE5	Time [s]
i1	$\begin{aligned} & \text { init } \\ & \text { LO } \end{aligned}$	$\begin{aligned} & -107 \\ & -104 \end{aligned}$	$\begin{aligned} & -26.1 \\ & -26.0 \end{aligned}$	$\begin{aligned} & 22412 \\ & 22431 \end{aligned}$	+0.01\%	0.00 \%	$\begin{aligned} & 83 \% \\ & 82 \% \end{aligned}$	409
i2	$\begin{aligned} & \text { init } \\ & \text { LO } \end{aligned}$	$\begin{aligned} & -14 \\ & -14 \end{aligned}$	$\begin{aligned} & \hline-1.7 \\ & -1.6 \end{aligned}$	$\begin{aligned} & 38048 \\ & 38067 \end{aligned}$	+0.02 \%	0.00 \%	$\begin{aligned} & 93 \% \\ & 93 \% \end{aligned}$	50
i3	$\begin{aligned} & \text { init } \\ & \text { LO } \end{aligned}$	$\begin{aligned} & -65 \\ & -53 \end{aligned}$	$\begin{aligned} & -67.4 \\ & -57.2 \end{aligned}$	$\begin{aligned} & 64230 \\ & 64249 \end{aligned}$	+0.04\%	+0.09 \%	$\begin{aligned} & 97 \% \\ & 96 \% \end{aligned}$	140
14	$\begin{aligned} & \text { init } \\ & \text { LO } \end{aligned}$	$\begin{array}{r} -17 \\ -3 \end{array}$	$\begin{aligned} & \hline-1.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & 78193 \\ & 77851 \end{aligned}$	-0.28\%	-0.14\%	$\begin{aligned} & 110 \% \\ & 110 \% \end{aligned}$	230
i5	$\begin{aligned} & \text { init } \\ & \text { LO } \end{aligned}$	$\begin{aligned} & -174 \\ & -152 \end{aligned}$	$\begin{aligned} & -335.4 \\ & -332.9 \end{aligned}$	$\left\lvert\, \begin{aligned} & 212210 \\ & 212236 \end{aligned}\right.$	+0.01\%	+0.01\%	$\begin{aligned} & 94 \% \\ & 94 \% \end{aligned}$	306
i6	$\begin{aligned} & \text { init } \\ & \text { LO } \end{aligned}$	$\begin{aligned} & -39 \\ & -24 \end{aligned}$	$\begin{aligned} & -19.7 \\ & -13.6 \end{aligned}$	$\left\lvert\, \begin{aligned} & 268473 \\ & 268336 \end{aligned}\right.$	0.00 \%	+0.03\%	$\begin{aligned} & 87 \% \\ & 88 \% \end{aligned}$	272
$i 7$	$\begin{aligned} & \text { init } \\ & \text { LO } \end{aligned}$	$\begin{aligned} & \hline-69 \\ & -55 \end{aligned}$	$\begin{aligned} & \hline-182.8 \\ & -168.9 \end{aligned}$	$\left\lvert\, \begin{aligned} & 274723 \\ & 274863 \end{aligned}\right.$	+0.03\%	+0.02 \%	$\begin{aligned} & 95 \% \\ & 95 \% \end{aligned}$	400
i8	$\begin{aligned} & \text { init } \\ & \text { LO } \end{aligned}$	$\begin{aligned} & \hline-125 \\ & -116 \end{aligned}$	$\begin{aligned} & \hline-656.3 \\ & -640.9 \end{aligned}$	$\left\lvert\, \begin{aligned} & 332695 \\ & 332787 \end{aligned}\right.$	0.00 \%	+0.02 \%	$\begin{aligned} & 92 \% \\ & 92 \% \end{aligned}$	253

Thank you for listening!

