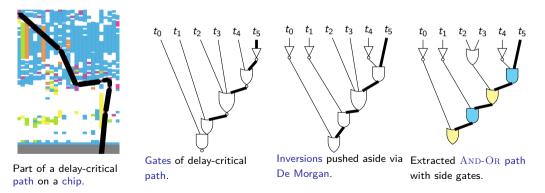
Delay Optimization of Combinational Logic by AND-OR Path Restructuring

Ulrich Brenner, Anna Silvanus

January 19, 2022 27th Asia and South Pacific Design Automation Conference

$\operatorname{And-OR}$ Paths as Delay-Critical Paths on Computer Chips

A combinational path on a computer chip can be translated into an $\rm And-OR$ path and optimized as such.

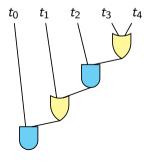


AND-OR Path Optimization

Definition (And-Or Path)

An AND-OR path on inputs t_0, \ldots, t_{m-1} is a Boolean formula of type $g(t_0, \ldots, t_{m-1}) = t_0 \land (t_1 \lor (t_2 \land (t_3 \lor (t_4 \land (\ldots, t_{m-1}) \ldots))))$ or $g^*(t_0, \ldots, t_{m-1}) = t_0 \lor (t_1 \land (t_2 \lor (t_3 \land (t_4 \lor (\ldots, t_{m-1}) \ldots))))$

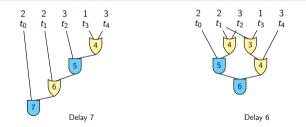
Example: $g(t_0 \land (t_1 \lor (t_2 \land (t_3 \lor t_4))))$:



AND-OR Path Optimization Problem

Arrival times:
$$a(t_0) \in \mathbb{N}$$
 t_0 t_1 $a(t_1) \in \mathbb{N}$
 g
 $a(g) = \max\{a(t_0), a(t_1)\} + 1$

The delay of a circuit C on inputs t_0, \ldots, t_{m-1} with arrival times $a(t_i) \in \mathbb{N}$ is the maximum arrival time of any node in C.



Task: Given inputs $t = (t_0, \ldots, t_{m-1})$ and input arrival times *a*, find a circuit with minimum delay realizing an AND-OR path on *t* using only AND2 and OR2 gates.

Our Contributions

And-Or path optimization:

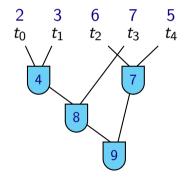
- Improved dynamic programming algorithm
- In experiments: significantly better than previous approaches and in most cases optimum

Application in timing:

- New logic restructuring framework
- Still improves timing after classical timing-optimization (gate sizing, buffering etc.) on recent industrial logic chips

Much Easier Case: Optimization of AND-Trees

Greedy algorithm (Huffman Coding) finds optimum solution:



Huffman Coding for Symmetric Trees

For given inputs $t = (t_0, \ldots, t_{m-1})$ with arrival times $a(t_i)$, let

$$W(t) := \sum_i 2^{a(t_i)}.$$

Theorem (Kraft; Huffman; Golumbic; Van Leeuwen)

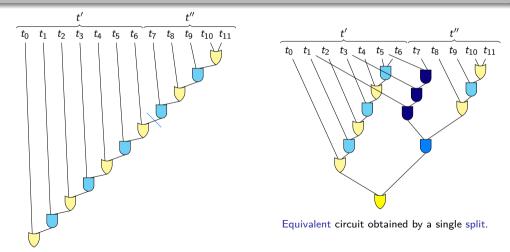
For inputs $t = (t_0, ..., t_{m-1})$ with arrival times $a(t_i)$, the Huffman Coding algorithm constructs a binary And tree (or Or tree) on t with delay exactly $\lceil \log_2 W(t) \rceil$. The algorithm can be implemented in linear time after sorting.

Observation

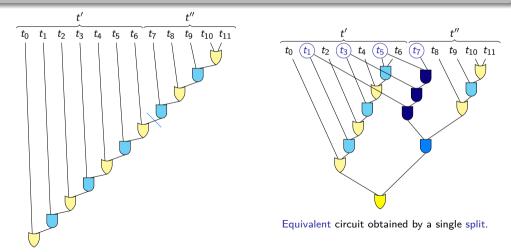
Any circuit containing only 2-input gates on inputs t_0, \ldots, t_{m-1} with arrival times $a(t_i)$ has delay at least $\lceil \log_2 W(t) \rceil$.

 $\Rightarrow \lceil \log_2 W(t) \rceil$ is also a lower bound on the delay of any AND-OR path circuit.

Recursively split the $\operatorname{And-OR}$ path into smaller $\operatorname{And-OR}$ paths plus additional logic.



Recursively split the $\operatorname{And-OR}$ path into smaller $\operatorname{And-OR}$ paths plus additional logic.



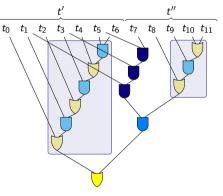
Idea

Recursively split the $\operatorname{And-OR}$ path into smaller $\operatorname{And-OR}$ paths plus additional logic.

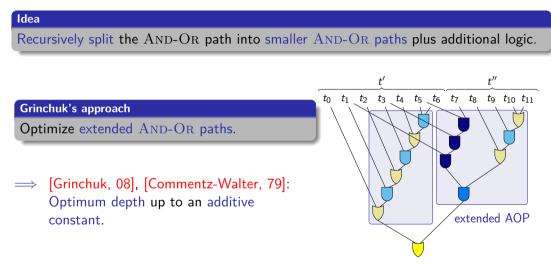
Circuit quality depends on used splits.

Classical approaches: Prefix circuits, e.g., [Sklansky, 60] [Kogge,Stone, 73], [Ladner, Fischer, 80], [Brent,Kung82], [Rautenbach, Szegedy, Werber, 06], [Held, Spirkl, 17b]

More general splits: e.g., [Khrapchenko, 67], [Rautenbach, Szegedy, Werber, 03], [Grinchuk, 08], [Spirkl, 14], [Held, Spirkl, 17b]



Prefix-split recursion.



[[]Grinchuk, 08] recursion.

Extended $\operatorname{AND-OR}$ Paths

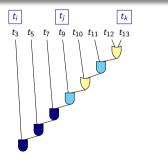
Definition

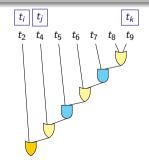
Given inputs $t = (t_0, \ldots, t_{m-1})$, an extended AND-OR path is a function of type $\phi_{i,j,k} = t_i \wedge t_{i+2} \wedge \ldots \wedge t_{j-4} \wedge t_{j-2} \wedge g(t_j, \ldots, t_k)$

or

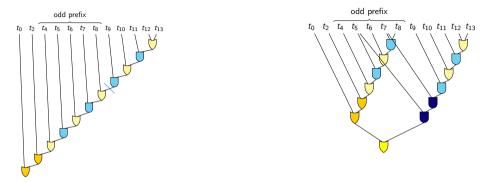
$$\phi^*_{i,j,k} = t_i \vee t_{i+2} \vee \ldots \vee t_{j-4} \vee t_{j-2} \vee g^*(t_j,\ldots,t_k)$$

with $0 \le i \le j \le k < m$ and j - i even.





Alternating Split with an Odd Prefix

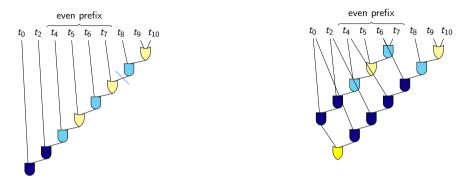


Alternating Split with an Odd Prefix

For odd prefix length $2\lambda + 1$ with $\lambda \in \{0, \dots, \frac{k-j-1}{2}\}$, we have

$$\phi_{i,j,k} = \phi_{i,j,j+2\lambda} \land \phi_{j+1,j+2\lambda+1,k}^*, \text{ and} \\ \phi_{i,j,k}^* = \phi_{i,j,j+2\lambda}^* \lor \phi_{j+1,j+2\lambda+1,k}.$$

Alternating Split with an Even Prefix



Alternating Split with an Even Prefix

For even prefix length $2\lambda + 1$ with $\lambda \in \{0, \ldots, \frac{k-j-1}{2}\}$, we have

$$\phi_{i,j,k} = \phi_{i,j,j+2\lambda-1} \lor \phi_{i,j+2\lambda,k} \quad \text{and} \\ \phi_{i,j,k}^* = \phi_{i,j,j+2\lambda-1}^* \land \phi_{i,j+2\lambda,k}^*.$$

Split Options in Our Dynamic Program

Possible Splits For odd prefix length $2\lambda + 1$ with $\lambda \in \{0, \ldots, \frac{k-j-1}{2}\}$, we have $\phi_{i,i,k} = \phi_{i,i,i+2\lambda} \wedge \phi^*_{i+1,i+2\lambda+1,k},$ (1)for even prefix length 2λ with $\lambda \in \{1, \ldots, \frac{k-j}{2}\}$, we have $\phi_{i,i,k} = \phi_{i,i,i+2\lambda-1} \vee \phi_{i,i+2\lambda,k},$ (2)and we have (3) $\phi_{i,i,k} = \phi_{i,i-2,i-2} \wedge \phi_{i,i,k}.$

Previous Work [B., Hermann, 2019]

Delay bound of $\log_2 W + \log_2 \log_2 m + \log_2 \log_2 \log_2 m + 4.3$.

Simple Dynamic Program for $\operatorname{And-OR}$ Path Optimization

```
Input: Inputs t = (t_0, \ldots, t_{m-1}) with arrival times a(t_i) \in \mathbb{N}.
Output: A Boolean circuit computing f(t).
for l \leftarrow 1 to m do
     foreach 0 \le i \le j \le k < m with j - i even s.t. \phi_{i,j,k} has l inputs do
           if k \in \{j, j+1\} then
                Apply Huffman coding to construct an optimum circuit C_{i,i,k} for \phi_{i,i,k} and an
                optimum circuit C_{i,i,k}^* for \phi_{i,i,k}^*.
           else
                C := list of candidate circuits for \phi_{i,i,k} arising from applying any valid split (1), (2),
                  (3).
               C_{i,j,k} := delay-minimum circuit among C.
C_{i,j,k}^* := dual circuit of C_{i,j,k}.
return C_{0,0,m-1}
```

Simple Dynamic Program – Guarantees

- ► All mentioned approaches are generalized by our algorithm.
- > All other mentioned theoretical guarantees also hold.

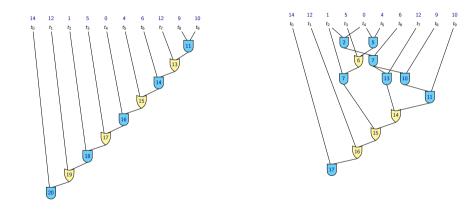
Theorem

Given Boolean input variables $t = (t_0, ..., t_{m-1})$ with arrival times a: $\{t_0, ..., t_{m-1}\} \rightarrow \mathbb{N}$, the dynamic program computes a circuit C realizing f(t) with delay at most

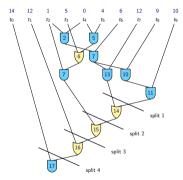
 $delay(C) \le \log_2 W + \log_2 \log_2 m + \log_2 \log_2 \log_2 m + 4.3$

and can be implemented to run in time $\mathcal{O}(m^4)$.

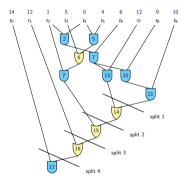
Example Solution of Simple DP

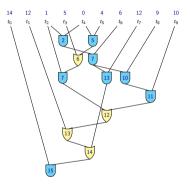


Problem with Simple DP



Problem with Simple DP





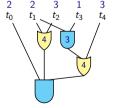
Undetermined circuits

Definition

An undetermined circuit is a Boolean circuit C consisting of AND and OR gates only such that all gates with the possible exception of out have fan-in two. With given input arrival times, the weight of C is

$$\mathsf{weight}(C) := \sum_{i=1}^{n} 2^{d_i},$$

here d_1, \ldots, d_k are the arrival times at the predecessors of out.



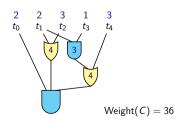
An undetermined circuit with weight $2^2 + 2^4 + 2^4 = 36$.

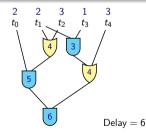
Lemma

Given an undetermined circuit C, we can construct a Boolean circuit using AND2 and OR2 gates only that computes the same Boolean function as C with delay at most $\lceil \log_2(weight(C)) \rceil$.

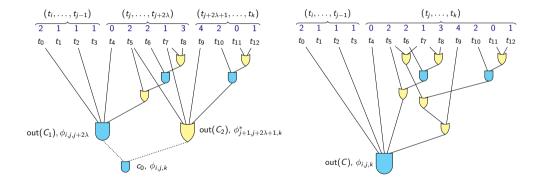
Proof.

Apply Huffman coding with the predecessors of out as inputs.





Merging Undetermined Circuits

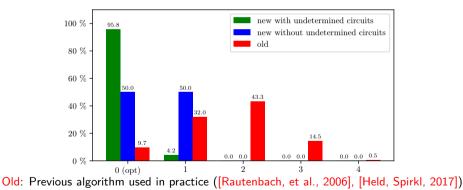


Final Dynamic Program for $\operatorname{And-OR}$ Path Optimization

```
Input: Inputs t = (t_0, \ldots, t_{m-1}) with arrival times a(t_i) \in \mathbb{N}.
Output: A Boolean circuit computing f(t).
for l \leftarrow 1 to m do
    foreach 0 < i < j < k < m with j - i even even s.t. \phi_{i,i,k} has l inputs do
         if k \in \{i, i+1\} then
              Apply Huffman coding to construct an optimum circuit A_{i,i,i} for \phi_{i,i,i} and an optimum
              circuit O_{i,i,i} for \phi_{i,i,i}^*.
         else
              C := list of candidate undetermined circuits for \phi_{i,j,k} arising from applying any valid
               split (1), (2) followed by a merge operation.
              A_{i,i,k} := weight-minimum circuit among C with output gate AND.
              O_{i.i.k} := weight-minimum circuit among C with output gate OR.
C := weight-minimum undetermined circuit among A_{0,0,m-1} and O_{0,0,m-1}.
Transform C into a circuit C' over {AND2, OR2}.
return C'
```

Comparison on Instances of Artificial Testbed

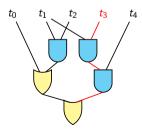
- For each n ∈ [4, 28], create 1000 instances with random arrival times in the interval [0, n].
- Compute delay difference to optimum solution

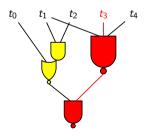


Technology Mapping

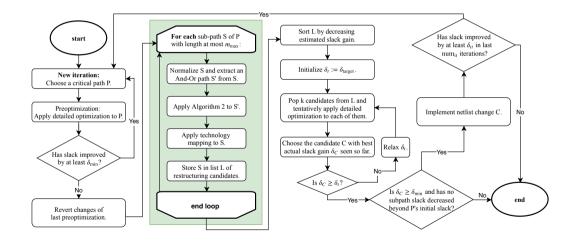
Idea

- Virtual timing model
- Objectives: slack, area and netlength
- ► Dynamic program: Merge gates locally and apply De Morgan's laws.
- On instances with few cycles: FPTAS
 - Applied after path restructuring and SymTree optimization





Our logic optimization framework



Experiments with the whole framework

Instances

- Industrial 7nm logic chips from IBM
- Between 22k and 332k gates.
- All instances result from a timing-driven placement followed by timing-optimization steps including gate sizing and buffering.
- Classical timing optimization cannot improve these instances any more.

We show the effect of the overall framework.

Results on 7nm Real-World Instances

Unit	Run	WS [ps]	TNS [ns]	# Gates	Area	Netlength	WACE5	Time [s]
i1	init LO	$\begin{array}{c} -107 \\ -104 \end{array}$	$-26.1 \\ -26.0$	22 412 22 431	+0.01 %	0.00%	83 % 82 %	409
i2	init LO	$-14 \\ -14$	$\begin{array}{c} -1.7 \\ -1.6 \end{array}$	38 048 38 067	+0.02 %	0.00%	93 % 93 %	50
i3	init LO	-65 -53	-67.4 -57.2	64 230 64 249	+0.04 %	+0.09%	97 % 96 %	140
i4	init LO	$-17 \\ -3$	$\begin{array}{c} -1.1 \\ -0.1 \end{array}$	78 193 77 851	-0.28 %	-0.14 %	110 % 110 %	230
i5	init LO	-174 -152	- 335.4 -332.9	212 210 212 236	+0.01 %	+0.01 %	94 % 94 %	306
i6	init LO	-39 -24	$\begin{array}{c} -19.7 \\ -13.6 \end{array}$	268 473 268 336	0.00 %	+0.03 %	87 % 88 %	272
i7	init LO	-69 -55	$-182.8 \\ -168.9$	274 723 274 863	+0.03 %	+0.02%	95 % 95 %	400
i8	init LO	$\begin{array}{c} -125 \\ -116 \end{array}$	$-656.3 \\ -640.9$	332 695 332 787	0.00 %	+0.02%	92 % 92 %	253

Thank you for listening!