
Delay Optimization of Combinational Logic
by And-Or Path Restructuring

Ulrich Brenner, Anna Silvanus

January 19, 2022
27th Asia and South Pacific Design Automation Conference



And-Or Paths as Delay-Critical Paths on Computer Chips

A combinational path on a computer chip can be translated into an And-Or path and
optimized as such.

Part of a delay-critical
path on a chip.

t0 t1 t2 t3 t4 t5

Gates of delay-critical
path.

t0 t1 t2 t3 t4 t5

Inversions pushed aside via
De Morgan.

t0 t1 t2 t3 t4 t5

Extracted And-Or path
with side gates.



And-Or Path Optimization

Definition (And-Or Path )

An And-Or path on inputs t0, . . . , tm−1 is a Boolean formula of type
g(t0, . . . , tm−1) = t0 ∧ (t1 ∨ (t2 ∧ (t3 ∨ (t4 ∧ (. . . tm−1) . . . ) or

g∗(t0, . . . , tm−1) = t0 ∨ (t1 ∧ (t2 ∨ (t3 ∧ (t4 ∨ (. . . tm−1) . . . ) .

Example: g(t0 ∧ (t1 ∨ (t2 ∧ (t3 ∨ t4)))): t0 t1 t2 t3 t4



And-Or Path Optimization Problem
Arrival times: t0 t1a(t0) ∈ N a(t1) ∈ N

g

a(g) = max{a(t0), a(t1)}+ 1

The delay of a circuit C on inputs t0, . . . , tm−1 with arrival times a(ti ) ∈ N is the
maximum arrival time of any node in C .

4

5

6

7

2 2 3 1 3
t0 t1 t2 t3 t4

Delay 7

2 2 3 1 3
t0 t1 t2 t3 t4

4 3

5 4

6

Delay 6

Task: Given inputs t = (t0, . . . , tm−1) and input arrival times a, find a circuit with
minimum delay realizing an And-Or path on t using only And2 and Or2 gates.



Our Contributions

And-Or path optimization:
I Improved dynamic programming algorithm
I In experiments: significantly better than previous approaches and in most cases

optimum

Application in timing:
I New logic restructuring framework
I Still improves timing after classical timing-optimization (gate sizing, buffering

etc.) on recent industrial logic chips



Much Easier Case: Optimization of And-Trees

Greedy algorithm (Huffman Coding) finds optimum solution:

2 3 6 7 5
t0 t1 t2 t3 t4

4 7

8

9



Huffman Coding for Symmetric Trees
For given inputs t = (t0, . . . , tm−1) with arrival times a(ti ), let

W (t) :=
∑

i
2a(ti ).

Theorem (Kraft; Huffman; Golumbic; Van Leeuwen)

For inputs t = (t0, . . . , tm−1) with arrival times a(ti ), the Huffman Coding algorithm
constructs a binary And tree (or Or tree) on t with delay exactly dlog2 W (t)e.
The algorithm can be implemented in linear time after sorting.

Observation

Any circuit containing only 2-input gates on inputs t0, . . . , tm−1 with arrival times a(ti )
has delay at least dlog2 W (t)e.

⇒ dlog2 W (t)e is also a lower bound on the delay of any And-Or path circuit.



Well-Known Recursive Circuit Construction

Idea

Recursively split the And-Or path into smaller And-Or paths plus additional logic.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t ′ t ′′

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t ′ t ′′

extended AOP

Equivalent circuit obtained by a single split.



Well-Known Recursive Circuit Construction

Idea

Recursively split the And-Or path into smaller And-Or paths plus additional logic.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t ′ t ′′

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t ′ t ′′

extended AOP

Equivalent circuit obtained by a single split.



Well-Known Recursive Circuit Construction

Idea

Recursively split the And-Or path into smaller And-Or paths plus additional logic.

Circuit quality depends on used splits.

Classical approaches: Prefix circuits, e.g.,
[Sklansky, 60] [Kogge,Stone, 73], [Ladner,
Fischer, 80], [Brent,Kung82], [Rautenbach,
Szegedy, Werber, 06], [Held, Spirkl, 17b]

More general splits: e.g., [Khrapchenko, 67],
[Rautenbach, Szegedy, Werber, 03], [Grinchuk,
08], [Spirkl, 14], [Held, Spirkl, 17b]

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t ′ t ′′

extended AOP

Prefix-split recursion.



Well-Known Recursive Circuit Construction

Idea

Recursively split the And-Or path into smaller And-Or paths plus additional logic.

Grinchuk’s approach

Optimize extended And-Or paths.

=⇒ [Grinchuk, 08], [Commentz-Walter, 79]:
Optimum depth up to an additive
constant.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t ′ t ′′

extended AOP

[Grinchuk, 08] recursion.



Extended And-Or Paths
Definition

Given inputs t = (t0, . . . , tm−1), an extended And-Or path is a function of type
φi ,j,k = ti ∧ ti+2 ∧ . . . ∧ tj−4 ∧ tj−2 ∧ g

(
tj , . . . , tk

)
or

φ∗i ,j,k = ti ∨ ti+2 ∨ . . . ∨ tj−4 ∨ tj−2 ∨ g∗
(
tj , . . . , tk

)
with 0 ≤ i ≤ j ≤ k < m and j − i even.

ti

t3 t5 t7

tj

t9 t10 t11 t12

tk

t13

ti

t2

tj

t4 t5 t6 t7 t8

tk

t9



Alternating Split with an Odd Prefix

t0 t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

odd prefix
t0 t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

odd prefix

Alternating Split with an Odd Prefix

For odd prefix length 2λ+ 1 with λ ∈ {0, . . . , k−j−1
2 }, we have

φi ,j,k = φi ,j,j+2λ ∧ φ∗j+1,j+2λ+1,k , and
φ∗i ,j,k = φ∗i ,j,j+2λ ∨ φj+1,j+2λ+1,k .



Alternating Split with an Even Prefix

t0 t2 t4 t5 t6 t7 t8 t9 t10

even prefix
t0 t2 t4 t5 t6 t7 t8 t9 t10

even prefix

Alternating Split with an Even Prefix

For even prefix length 2λ+ 1 with λ ∈ {0, . . . , k−j−1
2 }, we have

φi ,j,k = φi ,j,j+2λ−1 ∨ φi ,j+2λ,k and
φ∗i ,j,k = φ∗i ,j,j+2λ−1 ∧ φ∗i ,j+2λ,k .



Split Options in Our Dynamic Program

Possible Splits

For odd prefix length 2λ+ 1 with λ ∈ {0, . . . , k−j−1
2 }, we have

φi ,j,k = φi ,j,j+2λ ∧ φ∗j+1,j+2λ+1,k , (1)

for even prefix length 2λ with λ ∈ {1, . . . , k−j
2 }, we have

φi ,j,k = φi ,j,j+2λ−1 ∨ φi ,j+2λ,k , (2)
and we have

φi ,j,k = φi ,j−2,j−2 ∧ φj,j,k . (3)

Previous Work [B., Hermann, 2019]

Delay bound of log2 W + log2 log2 m + log2 log2 log2 m + 4.3.



Simple Dynamic Program for And-Or Path Optimization

Input: Inputs t = (t0, . . . , tm−1) with arrival times a(ti ) ∈ N.
Output: A Boolean circuit computing f (t).
for l ← 1 to m do

foreach 0 ≤ i ≤ j ≤ k < m with j − i even s.t. φi,j,k has l inputs do
if k ∈ {j, j + 1} then

Apply Huffman coding to construct an optimum circuit Ci,j,k for φi,j,k and an
optimum circuit C∗i,j,k for φ∗i,j,k .

else
C := list of candidate circuits for φi,j,k arising from applying any valid split (1), (2),

(3).
Ci,j,k := delay-minimum circuit among C.
C∗i,j,k := dual circuit of Ci,j,k .

return C0,0,m−1



Simple Dynamic Program – Guarantees

I All mentioned approaches are generalized by our algorithm.
I All other mentioned theoretical guarantees also hold.

Theorem

Given Boolean input variables t = (t0, . . . , tm−1) with arrival times
a : {t0, . . . , tm−1} → N, the dynamic program computes a circuit C realizing f (t) with
delay at most

delay(C) ≤ log2 W + log2 log2 m + log2 log2 log2 m + 4.3

and can be implemented to run in time O(m4).



Example Solution of Simple DP

10912640511214
t9t8t7t6t5t4t3t2t1t0

11

13

14

15

16

17

18

19

20

10912640511214
t9t8t7t6t5t4t3t2t1t0

52

76

10137

11

14

15

16

17



Problem with Simple DP

10912640511214
t9t8t7t6t5t4t3t2t1t0

52

76

10137

11

14
split 1

15
split 2

16
split 3

17
split 4

10912640511214
t9t8t7t6t5t4t3t2t1t0

52

76

10137

11

12

13

14

15



Problem with Simple DP

10912640511214
t9t8t7t6t5t4t3t2t1t0

52

76

10137

11

14
split 1

15
split 2

16
split 3

17
split 4

10912640511214
t9t8t7t6t5t4t3t2t1t0

52

76

10137

11

12

13

14

15



Undetermined circuits

Definition

An undetermined circuit is a Boolean circuit C consisting of And and Or gates only
such that all gates with the possible exception of out have fan-in two. With given
input arrival times, the weight of C is

weight(C) :=
k∑

i=1
2di ,

here d1, . . . , dk are the arrival times at the predecessors of out.

2 2 3 1 3
t0 t1 t2 t3 t4

4 3

4

An undetermined circuit with weight 22 + 24 + 24 = 36.



Lemma

Given an undetermined circuit C , we can construct a Boolean circuit using And2 and
Or2 gates only that computes the same Boolean function as C with delay at most
dlog2(weight(C))e.

Proof.
Apply Huffman coding with the predecessors of out as inputs.

2 2 3 1 3
t0 t1 t2 t3 t4

4 3

4

Weight(C) = 36

2 2 3 1 3
t0 t1 t2 t3 t4

4 3

4
5

6 Delay = 6



Merging Undetermined Circuits

1024312201112
t12t11t10t9t8t7t6t5t4t3t2t1t0

(ti , . . . , tj−1) (tj , . . . , tj+2λ) (tj+2λ+1, . . . , tk)

out(C1), φi ,j,j+2λ
out(C2), φ∗j+1,j+2λ+1,k

c0, φi ,j,k

1024312201112
t12t11t10t9t8t7t6t5t4t3t2t1t0

(ti , . . . , tj−1) (tj , . . . , tk)

out(C), φi ,j,k



Final Dynamic Program for And-Or Path Optimization

Input: Inputs t = (t0, . . . , tm−1) with arrival times a(ti ) ∈ N.
Output: A Boolean circuit computing f (t).
for l ← 1 to m do

foreach 0 ≤ i ≤ j ≤ k < m with j − i even even s.t. φi,j,k has l inputs do
if k ∈ {j, j + 1} then

Apply Huffman coding to construct an optimum circuit Ai,j,j for φi,j,j and an optimum
circuit Oi,j,j for φ∗i,j,j .

else
C := list of candidate undetermined circuits for φi,j,k arising from applying any valid

split (1), (2) followed by a merge operation.
Ai,j,k := weight-minimum circuit among C with output gate And.
Oi,j,k := weight-minimum circuit among C with output gate Or.

C := weight-minimum undetermined circuit among A0,0,m−1 and O0,0,m−1.
Transform C into a circuit C ′ over {And2,Or2}.
return C ′



Comparison on Instances of Artificial Testbed

I For each n ∈ [4, 28], create 1000 instances with random arrival times in the
interval [0, n].

I Compute delay difference to optimum solution

0 (opt) 1 2 3 4
0 %

20 %

40 %

60 %

80 %

100 % 95.8

4.2
0.0 0.0 0.0

50.0 50.0

0.0 0.0 0.0

9.7

32.0

43.3

14.5

0.5

new with undetermined circuits
new without undetermined circuits
old

Old: Previous algorithm used in practice ([Rautenbach, et al., 2006], [Held, Spirkl, 2017])



Technology Mapping

Idea
I Virtual timing model
I Objectives: slack, area and netlength
I Dynamic program: Merge gates locally and apply De Morgan’s laws.
I On instances with few cycles: FPTAS

I Applied after path restructuring and SymTree optimization

t0 t1 t2 t3 t4 t0 t1 t2 t3 t4



Our logic optimization framework

Yes

No

Has	slack	improved
	by	at	least	 ?�min

Preoptimization:	
Apply	detailed	optimization	to	P.

Revert	changes	of
last	preoptimization.

Normalize	S	and	extract	an
And-Or	path	S'	from	S.

No

Yes

Has	slack	improved
	by	at	least	 	in	last
	 	iterations?

���

numit

Apply	Algorithm	2	to	S'.

Apply	technology	
mapping	to	S.

For	each	sub-path	S	of	P	
with	length	at	most	 :�max

start

Store	S	in	list	L	of
restructuring	candidates.

Sort	L	by	decreasing	
estimated	slack	gain.

Pop	k	candidates	from	L	and
tentatively	apply	detailed

optimization	to	each	of	them.

Yes

No

Is	 ?≥�� ��

Choose	the	candidate	C	with	best
actual	slack	gain	 	seen	so	far.��

Relax	 .�t Yes

Is	 	and	has	no
subpath	slack	decreased
beyond	P's	initial	slack?

≥�� �min

Initialize	 .:=�� �target

end
end loop 

New	iteration:
Choose	a	critical	path	P.

No

Implement	netlist	change	C.



Experiments with the whole framework

Instances
I Industrial 7nm logic chips from IBM
I Between 22k and 332k gates.
I All instances result from a timing-driven placement followed by

timing-optimization steps including gate sizing and buffering.
I Classical timing optimization cannot improve these instances any more.

We show the effect of the overall framework.



Results on 7nm Real-World Instances

Unit Run WS [ps] TNS [ns] # Gates Area Netlength WACE5 Time [s]
init −107 −26.1 22 412 83 %i1 LO −104 −26.0 22 431 +0.01 % 0.00 % 82 % 409
init −14 −1.7 38 048 93 %i2 LO −14 −1.6 38 067 +0.02 % 0.00 % 93 % 50
init −65 −67.4 64 230 97 %i3 LO −53 −57.2 64 249 +0.04 % +0.09 % 96 % 140
init −17 −1.1 78 193 110 %i4 LO −3 −0.1 77 851 −0.28 % −0.14 % 110 % 230
init −174 −335.4 212 210 94 %i5 LO −152 −332.9 212 236 +0.01 % +0.01 % 94 % 306
init −39 −19.7 268 473 87 %i6 LO −24 −13.6 268 336 0.00 % +0.03 % 88 % 272
init −69 −182.8 274 723 95 %i7 LO −55 −168.9 274 863 +0.03 % +0.02 % 95 % 400
init −125 −656.3 332 695 92 %i8 LO −116 −640.9 332 787 0.00 % +0.02 % 92 % 253



Thank you for listening!


