Toward Optical Probing Resistant Circuits: A Comparison of Logic Styles and Circuit Design Techniques

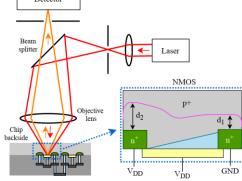
<u>Sajjad Parvin</u>, Thilo Krachenfels, Shahin Tajik, Jean-Pierre Seifert, Frank Sill Torres, and Rolf Drechsler

Sajjad Parvin, Doctoral Researcher AGRA Group, University of Bremen

Agenda

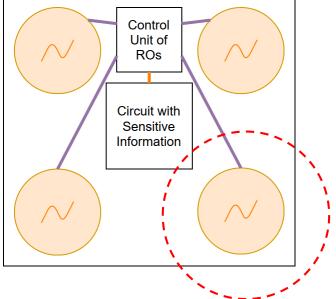
- What is the problem?
- What has been proposed to solve the problem so far?
- How are we trying to address the problem?
- Conclusion

What is the problem? I


- Meet the market demand
 - $\uparrow SOC complex ↓ yield → FA tools developed$
- An adversary equipped with FA?
- Hijacking information using laser
- On what basis?

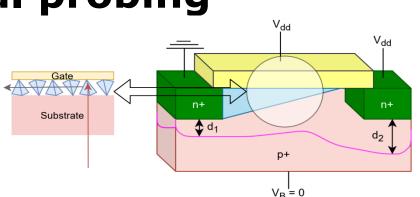
What is the problem? II

- Silicon \rightarrow Transparent to NIR
- Go through backside
- As the light passes through the backside
 Modulation of light
- Mainly doping concentration, but



Mobility Minor Bulk Voltage Size Major Voltage Structure

How to prevent optical probing (Literature) I


- Categorized into 3 types:
 - Sensor-based
 - Change fabrication process of the transistors
 - Circuit level
- Sensor-based*
 - Active monitoring
 - Large area
 - Can be shut down

Tajik, S., Lohrke, H., Seifert, J. P., & Boit, C. (2017). On the power of optical contactless Probing: Attacking bitstream encryption of FPGAs. Proceedings of the ACM Conference on Computer and Communications Security.

How to prevent optical probing (Literature) II

- Fabrication based:
 - Opaque layer
 - requires built-in sensors
 - Scramble the light
 - New materials in FET*
- Circuit level countermeasures
 - Concealing gates
 - Clever circuit designs

Circuit level countermeasures I

- Concealing gates*
 - Gate obfuscate data
 - Concentration never goes to zero
 - How?
 - Counterpart transistor must switch
- Problem?
 - Multi-input gates
- Solution:
 - Change gate's circuit design
- Concealing Gates NAND2 Gate Target Gate

7

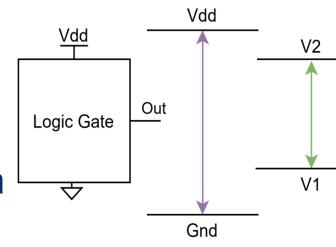
- Propose gates with concealing property

Rahman, M. T., Florida, U., Asadizanjani, N., & Florida, U. (2020). CONCEALING-Gate : Optical Contactless Probing Resilient Design. 1(1), 1–25.

Circuit level countermeasures II

- Let's start on our contribution
 - Formulate the Reflection
 - Proposed several design techniques
 - Experiment on circuits
 - Simulation

Circuit level countermeasures III

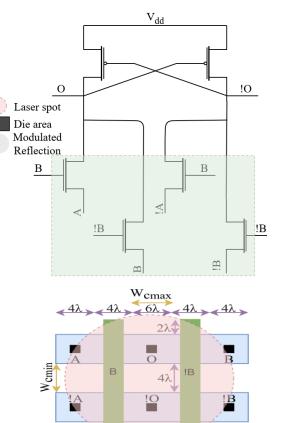

- Magnitude of reflection is: $RCV = V \times K \times \beta \times P_L \int_0^{2\pi} \int_0^{r_{spot}} p(r) \times A(r, \theta) \, dr d\theta$
- Magnitude of reflection of a FET:

 $RCV_{FET} = RCV_D + RCV_S + RCV_G + e^{-N} \times RCV_{Bulk}$

• Magnitude of reflection of a Logic Gate: $RCV_{Log.Gate} = \sum_{\forall t \in Log.Gate \ i \in \{D, S, G, Bulk\}} RCV_{ti}$

Circuit level countermeasures IV

- Smaller Area \rightarrow better
 - Merging diffusion areas
 - 50-75% reduction in area
- Reducing supply power
 - Subthreshold/Near Threshold design
 - Requires on-chip regulator
- Limited output swing
 - No need for voltage regulator
 - Sacrifices the noise margin


Circuit level countermeasures V

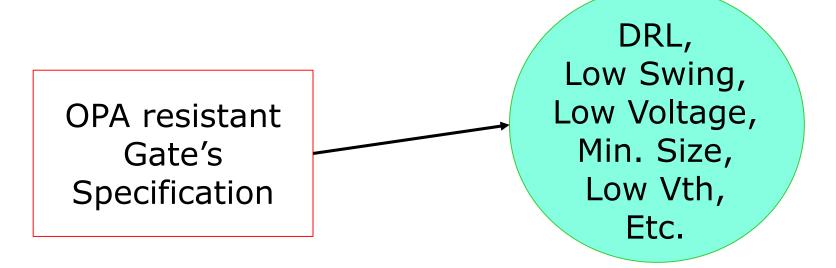
- Inherently obfuscating gates
 - Dual Rail Logic (DRL)
 - How?
- DRL \rightarrow Both signals
- How well it obfuscate?

- CARD

Technology	C_{min}	C_{min}	C_{max}	C_{max}
Node (nm)	[*]	ours	[*]	ours
90	0.780	0.208	1.561	0.312
45	0.390	0.104	0.780	0.156
32	0.277	0.074	0.555	0.111
22	0.191	0.051	0.382	0.076

*Rahman, M. T., Florida, U., Asadizanjani, N., & Florida, U. (2020). CONCEALING-Gate : Optical Contactless Probing Resilient Design. 1(1), 1–25. 222

A:0, B:0 A:1, B:0 A:0, B:1 A:1, B:1


Circuit level countermeasures IV : Results

RCV Difference Between Maximum and Minimum Reflection 120 100 PDN PUN 80 PUN + PDN Reflection Difference 60 40 20 0 NAND2 Z N N N N N Z N N ≧ A CMOS CMOS CMOS CMOS CMOS CNTL SRPL DCVS EEPL MCML DCVS NTV STV w/ Lim-DRL PG iter

Conclusion

- Physics of optical probing
- Logic gates and circuit techniques
- Combination of all techniques

Thank you for you attention! ③

• Questions?