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Self Introduction

• B.Eng. degree from Tsinghua University, Beijing, 

China, in 2020

• Ph.D. candidate at Tsinghua University, Beijing, 

China

• My research interests are in architecture design of 

accelerators for fast CNN training and inference.

• Network Pruning

• Neural architecture search
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• Hardware Architecture

• Main Results

• Conclusion
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CNN continues to thrive

Smart retail Personalized healthcare Smart city

Smart manufacturing Autonomous driving Smart teaching
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CNN continues to thrive

Deng et al., Proc. IEEE, 2020
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• Real-time requirement

• Autonomous driving

• Image enhancement

• Video super resolution

• ……

• Methods

• Unstructured pruning

• Structured pruning
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Unstructured Sparsity

• Unstructured Sparsity does not directly translate to speedup 

and data compression

Wen et al., NeurIPS, 2016
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Structured Sparsity

• Structured pruning leads to more accuracy drop

• Is there a new way?

Mao et al., CVPR, 2017
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The introduction of Adaptivity in CNN

• Motivation • Advantage

• Efficiency

• Representation power

• Adaptiveness

• Interpretability

• Generality
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The introduction of Adaptivity in CNN

• Simple comparison between previous methods and ours

• Dynamic neural network
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Dynamic Inference

• Dynamic layer skipping

Veit et al., ECCV, 2018
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Dynamic Inference

• Dynamic channel pruning

Gao et al., ICLR, 2019
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Dynamic inference

• Dynamic spatial pruning

Xie et al., ECCV, 2020
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Hyper-network

Ha et al., ICLR, 2016

• We do not know weights for 

each layer. The weights are 

generated through linear 

transformation.

• A hyper-network is the network 

which is responsible for 

producing filters for each layer.
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Kernel Generator

Zhang et al., CoRR, 2020
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Overall Structure

• Dynamic parameters

• Kernel enhancement

• Dynamic aggregation

• Dynamic inference

• Dynamic filter selection
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Overall Structure

• Extract global feature

• Augment kernel templates

• Aggregate the templates by 

weight factor to generate filters

• Score the filter to carry channel 

selection
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Kernel Enhancement

• Kernel Augmentation

• Fact 1: CNN can handle input augmentation

Cat Cat

Cat Cat



22/4227th Asia and South Pacific Design Automation Conference

Kernel Enhancement

• Kernel Augmentation

• CNN with augment inputs           augment CNNs with origin inputs

Cat Cat

Cat Cat
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Kernel Enhancement

• Kernel Augmentation

• Fact 2: filters work as feature extractor (the origin and the flipped CNN)
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elephant

elephant

Different information extracted, both useful
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Kernel Enhancement

• Kernel Augmentation

67.6 88.0

68.6
88.6

Base filter Augment filter Base filter Augment filter

Top-1 Top-5
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Kernel Enhancement

• Kernel Shuffle

Zhang et al., CVPR, 2018
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Kernel Enhancement

• Kernel Shuffle

Shuffle in the group Shuffle in the channel
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Online Channel selection

• Predict the importance scores of each channel

• The truncation on the channel is not differentiable

How to train it?

• Process
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Online Channel selection

• The Sign function

• Hard Sign • Soft Sign

• Backward propagation

𝑆𝑖𝑔𝑛 𝑥 = ቊ
1, 𝑥 > 0
0, 𝑥 < 0

𝑆𝑖𝑔𝑛 𝑥 = ቊ
1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 𝑥
0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑥
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Hardware architecture

• Overall structure

• Generate the aggregation factor and 

predict the filter score.

• Import the templates and online 

generate the filters in parallel.
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Hardware architecture

• Channel selecting module

• Use a comparator tree to accelerate 

the score comparison.

• Online maintain a channel index 

buffer to control the data load to PE 

array.
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Kernel Enhancement

ResNet18 on ImageNet

ResNet20 on Cifar10

0.44↑
0.49↑

1.44↑
0.57↓

0.83↑

0.20↑1.30↑

0.89↑

Simple

Simple

Augment

Augment Shuffle

Shuffle

Both

Both
Baseline

Baseline

• Tests Without channel 

selection module. 

Weights are saved ~50% 

compared with baseline

• Simple means only 

simple generator applied

• Augment denotes 

Generator with kernel 

augmentation applied

• Shuffle denotes 

Generator with kernel 

shuffle applied
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Kernel Enhancement

• Pearson product-moment correlation coefficient factor of feature map

• Absolute value is shown here

• Kernel enhancement can help the 

generator produce filters that are 

less similar
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Channel Selection

• Utilization frequency of some representative filters by each classes in Cifar10

• Input of similar classes tend to 

select same channels and filters

• No filters are really pruned, so the 

representation ability is preserved
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Overall results

• Overall speedup on Ultra96-v2

ResNet18 ResNet20 DerainNet

58%
63%

Baseline Real Theo Baseline Real Theo Baseline Real Theo

62%
56% 56%60%

100% 100% 100%
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Overall results

• Accuracy comparison

• Comparison with some state-of-the-art 

dynamic pruning methods

• Our method generally have higher 

accuracy at similar speedup ratio
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Overall results

• The design space and accuracy comparison

ResNet-20 on Cifar-10

• Comparison with two structured 

pruning methods

• At similar acceleration ratio, our 

method has better accuracy
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Conclusion

• Dynamic inference with dynamic parameters can truly stimulate 

the potential of dynamic neural network.

• Kernel enhancement can help the generator to produce more

unique filters.

• Online channel selection can help choose the most suitable 

filters for each input.

• In the future, new architecture can be designed for more fine-

grained dynamic pruning pattern.
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Thank you!


