

Dynamic CNN Accelerator Supporting Efficient Filter Generator with Kernel Enhancement and Online Channel Pruning

Chen Tang, Wenyu Sun, Wenxun Wang, Yongpan Liu

Tsinghua University, Beijing, China

Self Introduction

- B.Eng. degree from Tsinghua University, Beijing, China, in 2020
- Ph.D. candidate at Tsinghua University, Beijing, China
- My research interests are in architecture design of accelerators for fast CNN training and inference.
 - Network Pruning
 - Neural architecture search

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

CNN continues to thrive

Smart retail

Smart manufacturing

Personalized healthcare

Autonomous driving

Smart city

Smart teaching

CNN continues to thrive

of MACs (Billion)

Deng et al., Proc. IEEE, 2020

- Real-time requirement
 - Autonomous driving
 - Image enhancement
 - Video super resolution
 -
- Methods
 - Unstructured pruning
 - Structured pruning

Unstructured Sparsity

 Unstructured Sparsity does not directly translate to speedup and data compression

Structured Sparsity

Structured pruning leads to more accuracy drop

Mao et al., CVPR, 2017

• Is there a new way?

The introduction of Adaptivity in CNN

Motivation

- Advantage
 - Efficiency
 - Representation power
 - Adaptiveness
 - Interpretability
 - Generality

The introduction of Adaptivity in CNN

• Dynamic neural network

• Simple comparison between previous methods and ours

	kernels	inference	compression	accuracy
structured	static	static	\checkmark	low
dy-dnn	static	dynamic	×	medium
ours	dynamic	dynamic	\checkmark	high

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

Dynamic Inference

• Dynamic layer skipping

Dynamic Inference

Dynamic channel pruning

Dynamic inference

• Dynamic spatial pruning

Xie et al., ECCV, 2020

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

Hyper-network

- We do not know weights for each layer. The weights are generated through linear transformation.
- A hyper-network is the network which is responsible for producing filters for each layer.

Ha et al., ICLR, 2016

Kernel Generator

Zhang et al., CoRR, 2020

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

Overall Structure

- Dynamic parameters
 - Kernel enhancement
 - Dynamic aggregation
- Dynamic inference
 - Dynamic filter selection

Overall Structure

$$\pi = \mathbf{E}(x),$$

 $\mathbf{f}_{\rm aj} = \sum_{i=1}^{K} \pi_{\rm ji} * \mathbf{T}_{\rm ai}, \, a = 0, ...q/K, \, j = 0, ...mn$

- Extract global feature
- Augment kernel templates
- Aggregate the templates by weight factor to generate filters
- Score the filter to carry channel selection

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

- Kernel Augmentation
 - Fact 1: CNN can handle input augmentation

- Kernel Augmentation
 - CNN with augment inputs augment CNNs with origin inputs

- Kernel Augmentation
 - Fact 2: filters work as feature extractor (the origin and the flipped CNN)

Different information extracted, both useful

Kernel Augmentation

Kernel Shuffle

Zhang et al., CVPR, 2018

• Kernel Shuffle

Shuffle in the group

Shuffle in the channel

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

Online Channel selection

• Predict the importance scores of each channel

• Process

$$\begin{aligned} scores &= \mathbf{S}(gf), \quad \mathbf{M} = Sign(scores - \delta), \\ out &= \phi(x) * M * scores. \end{aligned}$$

• The truncation on the channel is not differentiable How to train it?

Online Channel selection

- The Sign function
 - Hard Sign

$$Sign(x) = \begin{cases} 1, & x > 0\\ 0, & x < 0 \end{cases}$$

$$Sign(x) = \begin{cases} 1, & \text{with probability } x \\ 0, & \text{with probability } 1 - x \end{cases}$$

Backward propagation

$$\frac{\partial M}{\partial scores} = 1 - tanh^2(scores - \delta).$$

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

Hardware architecture

Overall structure

- Generate the aggregation factor and predict the filter score.
- Import the templates and online generate the filters in parallel.

Hardware architecture

Channel selecting module

- Use a comparator tree to accelerate the score comparison.
- Online maintain a channel index buffer to control the data load to PE array.

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

• Pearson product-moment correlation coefficient factor of feature map

$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

- Absolute value is shown here
- Kernel enhancement can help the generator produce filters that are less similar

Channel Selection

• Utilization frequency of some representative filters by each classes in Cifar10

- Input of similar classes tend to select same channels and filters
- No filters are really pruned, so the representation ability is preserved

Overall results

• Overall speedup on Ultra96-v2

Overall results

Accuracy comparison

Method	Top-1 Acc	Top-5 Acc	Params	Flops
MIL [15]	3.65%↓	2.3%↓	0%↓	44.7%↓
FBS [6]	2.54%↓	1.46%↓	0%↓	49.5%↓
CGNN [16]	1.62%↓	1.03%↓	0%↓	38.3↓
AAS [3]	1.41%↓	0.74%↓	0%↓	48.5%↓
Ours	1.31%↓	0.59%↓	42%↓	46.4%↓

(a) ResNet18 on ImageNet

(b) ResNet20 on Cifar10

Method	Top-1 Acc Drop	Params Drop	FLOPs Drop
AIG [17]	1.9%↓	0.0%↓	50.4%↓
FBS [6]	0.48%↓	0.0%↓	52.5%↓
Ours	0.46%↓	45.3%↓	51.8%↓

- Comparison with some state-of-the-art dynamic pruning methods
- Our method generally have higher accuracy at similar speedup ratio

Overall results

The design space and accuracy comparison

- Comparison with two structured pruning methods
- At similar acceleration ratio, our method has better accuracy

- Introduction to Neural Network Sparsity
- Background
 - Dynamic inference
 - Dynamic parameter
- Methods
 - Kernel Enhancement
 - Online Channel Selection
 - Hardware Architecture
- Main Results
- Conclusion

Conclusion

- Dynamic inference with dynamic parameters can truly stimulate the potential of dynamic neural network.
- Kernel enhancement can help the generator to produce more unique filters.
- Online channel selection can help choose the most suitable filters for each input.
- In the future, new architecture can be designed for more finegrained dynamic pruning pattern.

Thank you!