

Tsinghua University

Toward Low-Bit Neural Network Training Accelerator by

Dynamic Group Accumulation

Speaker: <u>Yixiong Yang</u>, Dept. of Electronic Engineering, Tsinghua University Authors: Yixiong Yang, Ruoyang Liu, Jinshan Yue, Wenyu Sun, Huazhong Yang, and Yongpan Liu Contact: ypliu@tsinghua.edu.cn

Outline

Background of the CNN Training

- Challenge: Low-Bit Accumulation
- > Dynamic Group Accumulation (DGA) Algorithm
- Efficient DGA Hardware Design

Conclusion

Demand of the Training Accelerator

Growing Need of Large Neural Network Model

Higher Energy Efficiency of Training Accelerators

Ascend 910, Huawei

A-100, Nvidia

CNN Training Algorithm

- Weight Update (WU)
- Training needs Higher Precision
 - Uncertain data range in different training epochs
 - 10k-1M accumulations in the WU stage

Architecture of Training Accelerator

45nm CMOS Norm Energy (per bit)

M. Horowitz, ISSCC14 [5]

Recent Works on Low-Bit Training

Methods to Achieve Low-bit Training

• Fine-grained Quantization

Multi-Level Scaling

Zhong, et al. ArXiv:2006.02804

• Clip the long-tailed data

Tensor Scale S_t S_t Expt Man₊ \otimes Group 0 Scale S_{q0} Group 1 Scale S_{g1} Group N Scale S_{gN} М М Μ S_a Expg Expg Expg \otimes \otimes \otimes Man_x Exp_x Man_x Man_x Exp_x Exp_x S S Exp_x Exp_x |Man_x Exp_x S Man_x S Man $S_s \odot \overline{X}$ S Exp_x Man_x Man_x Exp_x Man_y S S Exp_x S Group 0 Group 1 Group N

FP7(1-2-4) Train ImageNet with No Loss

Clipping Range Select

Cambrion-Q, ISCA 2021

Recent Works on Low-Bit Training

Methods to Achieve Low-bit Training

- Fine-grained Quantization
- Clip the long-tailed data
- **A Typical Quantization Setting** (J. Park, ISSCC2021)
 - Multiply: FP8 (1-4-3)
 - Accumulate: FP30 (1-6-23), similar to FP32 (1-8-23)

The Bottleneck: High-Bit Accumulation

Outline

Background of Low-Bit CNN Training

> Challenge: Low-Bit Accumulation

Dynamic Group Accumulation (DGA) Algorithm

Efficient DGA Hardware Design

Conclusion

Challenge: Low-bit Accumulation

Float-Point Swamping Error

Safe Accumulation Precision

Error increased with accumulation

Commonly need FP32 in training [13]

1-value is round-off in every addition

FP16 Naïve Accumulation

Challenge: Low-bit Accumulation

Solution: Group Accumulation

• Reduce error from 130% to 17%

Group Size Selection

- Static size Ng=16[7], Ng=24[13]
- Can't fit the changing data

10

Solution of This Work

• Dynamic Group Accumulation

- Reduce error from 17% to 0.25%
- Contributions of This Work
 - The optimal DGA algorithm
 - The efficient DGA HW design

Adjust group size with changing data

FP16 Static Group Acc

FP16 Dynamic Group Acc

Outline

Background of Low-Bit CNN Training

Challenge: Low-Bit Accumulation

> Dynamic Group Accumulation (DGA) Algorithm

Efficient DGA Hardware Design

Conclusion

Model Formulation of DGA

Two Stages of Accumulation

- Intra-Group Acc: M firstly accumulates in P_G
- Inter-Group Acc: Add P_G to P_o and clear P_G
- Group Algorithm: Decide intra- or inter-group accumulation

Basic Assumption & Optimal Result

Assumption 1: Independent & Uniform Error Distribution

$$\overline{E_{acc}^2} = \frac{1}{N_g} (\overline{E_O^2} + \sum_{n=0}^{N_g-1} \overline{E_G^2(n)}) \qquad \overline{E_O^2} = \frac{(P_O * 2^{-m})^2}{12}, \quad \overline{E_G^2(n)} = \frac{(P_G * 2^{-m})^2}{12}$$

- Assumption 2: Psum Result Changing Piecewise Linearly
 - Pg(n)~n
- Target Function & Optimial Condition

$$\arg\min \overline{E_{acc}^2}(P_O, P_G, N_g) \rightarrow \frac{2N_g}{3} P_G^2(N_g) = P_O^2$$

Efficient DGA Algorithm

Ideal DGA Algorithm

• Group threshold:
$$|P_{\rm G}| > \sqrt{3P_0^2/2n}$$

Problem 1: Threshold Calculation

Problem 2: Threshold Saving

- Efficient DGA Algorithm
 - Simplify threshold calculation
 - $|P_{\rm G}| > T_E = 2^{-c} * P_O$
 - Saving threshold register usage
 - Sharing among weight kernel

Algorithm 1: DAG-based Gradient Computation **Data**: Input Activation A_i , Output Gradient δA_o , Initial Threshold T_0 **Result**: Weight Gradient $\delta W[j,k][c_i][c_o]$ 1 // Variable Initialization: **2** $P_G = 0$; $P_O = 0$; n = 1; $T = T_0$; **3** for b = 0 to B - 1 do for x = 0 to H - 1 do for y = 0 to W - 1 do 5 $M = A_i[b][x+j][y+k][c_i] * \delta A_o[b][x][y][c_o];$ 6 if $|P_G| < T$ then 7 $P_G = P_G + M;$ 8 n = n + 1;9 end 10 else 11 $P_O = P_O + P_G;$ **Efficient threshold** 12 $P_G = M, \ n = 1;$ $T = \sqrt{3P_O^2/2n}; \quad \longrightarrow \quad T_E = 2^{-c} * Avg(P_O)$ 13 14 end 15 end 16 end 17 18 end 19 return $\delta W[j][k][c_i][c_o] = P_O + P_G;$

DGA Algorithm Performance

Experiment Setting

- CIFAR-100 dataset, ResNet-38 model
- ImageNet dataset, ResNet-18 model
- Training Batch Size = 256
- Calculation Error with Different Bit-width
 - Ideal-DGA can save 6.31/6.91 bits compared to the SGA [7]
 - E-DGA only loss 0.21/0.45 bits than Ideal-DGA

Error Definition

$$\tan(\delta\theta) = \sqrt{\left(\frac{||\delta W_c||_2 |||\delta W_t||_2}{<\delta W_c, \ \delta W_t >}\right)^2 - 1}$$

DGA Algorithm Performance

Experiment Setting

- CIFAR-100 dataset, ResNet-38 model
- ImageNet dataset, ResNet-18 model
- Training Batch Size = 256

Calculation Error with Different Bit-width

- Ideal-DGA can save 6.31/6.91 bits compared to the SGA []
- E-DGA only loss 0.21/0.45 bits than Ideal-DGA

DGA Algorithm Performance

- Discussion on Different Batch Size
 - Batch Size = 1: DGA error is 17.6x smaller (-24.9dB) than SGA error
 - Batch Size = 256: DGA error is 89.1x smaller (-39.0dB) than SGA error
- Discussion on Different Layer
 - **FP12** (1-5-6) E-DGA outperforms FP16 (1-6-9) SGA

Outline

Background of Low-Bit CNN Training

Challenge: Low-Bit Accumulation

> Dynamic Group Accumulation (DGA) Algorithm

Efficient DGA Hardware Design

Conclusion

DGA-Based Training Architecture

Overall Architecture

- Tensor-Core like PE array + Memory hierarchy
- F/B/WU Router: Route and transpose data for three stages

• E-DGA Unit Design

• 8.8% area overhead for E-DGA function

	Column Input	Row Input	PE Output
Forward	A_i	W	A_o
Backward	δA_o	W^T	δA_i
WU	A_i^T	δA_o^T	δW

Hardware Performance

Hardware Simulation Setting

- Implemented in Verilog
- Synthesized result of TSMC 65-nm CMOS tech

Power Breakdown

• Four Schemes With Different Accumulation Units

SRAM Mul Acc Router Other

Power (mW)

Compared with IBM[7]

- Better precision
- 9.8% power saving

Compared with NVDLA [10]

- 0.1% accuracy Loss
- 32% power saving

Outline

Background of Low-Bit CNN Training

- Challenge: Low-Bit Accumulation
- > Dynamic Group Accumulation (DGA) Algorithm
- Efficient DGA Hardware Design

Conclusion

Conclusion

- DGA Solution to Achieve Low-bit CNN Training
 - An Optimized DGA Algorithm
 - Giving two assumption and theoretical derivation
 - Efficient DGA Hardware Design
 - Support efficient DGA unit in the accelerator
 - Comprehensive Analysis on DGA
 - Multi experiment on both DGA algorithm and hardware

Reduce accumulation bit-width by 6 bits and save 32% power consumption

Reference

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton. "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, 2012, pp. 1097-1105

[2] J. Devlin, MW. Chang, K. Lee, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint, arXiv:1810.04805, 2018.[

3] D. Silver, A. Huang, C. J. Maddison, et al. "Mastering the game of Go with deep neural networks and tree search," nature, 2016, 529(7587): 484-489.

[4] J. Zhuang, T. Tang, Y. Ding, et al. "AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients," Proceedings of the 34nd International Conference on Neural Information Processing Systems, 2020, 33.

[5] U. Evci, T. Gale, J. Menick, et al. "Rigging the lottery: Making all tickets winners," International Conference on Machine Learning, 2020, pp. 2943-2952.

[6] J. Lee, J. Lee, D.Han, et al. "LNPU: A 25.3 TFLOPS/W sparse deep-neural-network learning processor with fine-grained mixed precision of FP8-FP16," 2019 IEEE International Solid-State Circuits Conference-(ISSCC), 2019, pp. 142-144.

[7] A. Agrawal, S. K. Lee, J. Silberman, et al. "A 7nm 4-Core AI Chip with 25.6 TFLOPS Hybrid FP8 Training, 102.4 TOPS INT4 Inference and Workload-Aware Throttling," 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021, pp. 144-146.

[8] H. Jiang, S. Huang, X.Peng, et al. "A two-way SRAM array based accelerator for deep neural network onchip training," Design Automation Conference (DAC), 2020, pp. 1-3.

Reference

[9] R. Banner, I. Hubara, E. Hoffer, et al. "Scalable methods for 8-bit training of neural networks," Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, pp. 5151-5159.

[10] "Nvdla deep learning accelerator, , in http://nvdla.org.

[11] Z. Yuan, Y. Liu, J. Yue, et al. "STICKER: An Energy-Efficient Multi-Sparsity Compatible Accelerator for Convolutional Neural Networks in 65-nm CMOS," IEEE Journal of Solid-State Circuits, 2020, pp. 465-477.

[12] N. Wang, J. Choi, D. Brand, et al. "Training deep neural networks with 8-bit floating point numbers," Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018, pp. 7686-7695.

[13] J. Park, S. Lee, D. Jeon, et al. "A 40nm 4.81 TFLOPS/W 8b Floating-Point Training Processor for Non-Sparse Neural Networks Using Shared Exponent Bias and 24-Way Fused Multiply-Add Tree," 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021, pp. 1-3.

Thanks a lot! Welcome for questions!

