

An Energy-Efficient Bit-Split-and-Combination Systolic Accelerator for NAS-Based Multi-Precision Convolution Neural Networks

presented by Liuyao Dai

Authors:

Liuyao Dai, Quan Cheng, Yuhang Wang, Gengbin huang, Junzhuo Zhou, Kai Li, Wei Mao, and Hao Yu

Southern University of Science and Technology

Shenzhen, China

Introduction

- Bit-Split-and-Combination MAC
- Multi-precision systolic accelerator
- Systolic dataflow
- Experiment
- Conclusion

Introduction

- Bit-Split-and-Combination MAC
- Multi-precision systolic accelerator
- Systolic dataflow
- Experiment
- Conclusion

Deep learning for edge computing: convolutional neural network (CNN) models are becoming more complex with larger parameters

Neural Architecture Search (NAS) can search for optimized multi-precision neural network models :

- negligible loss of accuracy
- energy efficiency

Configuration of a network Controller Energy Hardware

Fig. 1 Illustration of energy aware neural architecture search framework

Existing multi-precision multiply-accumulate (MAC) disadvantages:

- Bottom-up low-precision-combination (LPC) large hardware cost huge power consumption
- Top-down high-precision-split (HPS) poor throughput performance

Proposed Work:

- Bit-split-and-combination (BSC) method
 tradeoff cost and throughput
- Multi-precision systolic dataflow data reuse and energy efficient

Fig. 2 Typical NAS flow with proposed multi-precision systolic architecture

Introduction

Bit-Split-and-Combination MAC

- Multi-precision systolic accelerator
- Systolic dataflow
- Experiment
- Conclusion

Bit-Split-and-Combination MAC

Fig. 3 The mathematically characteristics of multi-precision multiplication operation for BSC method

Bit-Split-and-Combination MAC

Fig. 4 BSC MACs for multi-precision operations including 8-bit, 4-bit and 2-bit modes

Introduction

Bit-Split-and-Combination MAC

Multi-precision systolic accelerator

- Systolic dataflow
- Experiment
- Conclusion

BitBrick(BB) and Multi-Precision BSC PE

Parameter	3×3	5×5	7×7
size of the convolution (K)	3	5	7
number of updated input activations (N)	15	10	7
calculation cycles (J)	45	50	49
number of convolution kernel groups (L)	5	2	1

Table 1 Parameters of the computation in BitBrick

- BB contains a 4-bit width MAC, corresponding storage registers and a shuffler.
- 4 BBs form a PE which performs multi-precision computations.

Fig. 5 Multi-precision BSC BB

Fig. 6 PE structure

Systolic PE Array

- Weights are stored in PE array fetched from weight buffer.
- Input activations flow from PE_1 to PE_{256} sequentially.
- Outputs from PE array are transmitted to psum buffer.

Fig. 7 Multi-precision systolic dataflow of PE array

Introduction

- Bit-Split-and-Combination MAC
- Multi-precision systolic accelerator
- Systolic dataflow
- Experiment
- Conclusion

systolic dataflow

Shape Parameter	Description	
Μ	numbers of 3D filters	
С	numbers of ifmap/filter channels	
н	ifmap width/height	
R	filter width/height	
E	ofmap width/height	

Table 2 Parameters of a conv layer

Fig. 8 Computation of a CONV layer

Fig. 9 Processing of the systolic dataflow

Data reuse in the systolic dataflow

Fig. 10 Data reuse in the processing of the systolic dataflow

- input activations from different input channels are input to the same PE in different cycles
- different filters are stored in different PEs

Fig. 11 Data reuse in BSC BB

- Input activation is reused K times in BSC BB
- Weight is reused E² times in BSC BB

Introduction

- Bit-Split-and-Combination MAC
- Multi-precision systolic accelerator
- Systolic dataflow

Experiment

Conclusion

MAC Performance Comparison

Precision	HPS(TOPS/W)	LPC(TOPS/W)	BSC(TOPS/W)	BSC/HPS	BSC/LPC
2 bit	12.6	32.7	27.36	2.4	0.82
4 bit	6.29	8.16	13.68	2.4	1.64
8 bit	3.14	2.04	3.42	1.2	1.64

Table 3 Energy efficient comparison of multi-precision mac units

Fig. 12 Performance metrics comparison between traditional HPS, LPC and the BSC MAC units

• the proposed BSC MAC unit in this work has the characteristics of low power consumption, low hardware cost and fast calculation speed.

System Performance Comparison

CNN	Dataset	Model Weights	2bit/4bit/8bit proportion		
VGG-16	CIFAR-10	138.0 MBytes	0%/89.8%/10.2%		
ResNet-18	ImageNet	13.0 MBytes	0%/94.5%/5.5%		
LeNet-5	MNIST	0.5 MBytes	45.0%/55.0%/0%		
	Table 4 Evaluated CNN benchmarks				

	Gemmini	Bit-serial	Bit-fusion	BSC
Technology	FinFET 16 nm	28 nm	28 nm	28 nm
Cores	256 PEs	4096 SIPs	512 fusion units	256 PEs
On-chip (Memory)	64 KB	2 MB eDRAM 16 KB SRAM	181.5 KB	180 KB
Chip area (mm ²)	0.467	1.40	/	1.43
Frequency	500 MHZ	980 MHZ	500 MHZ	500 MHZ

Table 5 Evaluated accelerators

System Performance Comparison

Fig. 13 Improvement ratios of the BSC systolic accelerator to Gemmini, Bit-fusion and Bit-serial on multi-precision CNN benchmarks: (a) Area efficiency, (b) Energy efficiency.

- Area efficiency performance: Compared with Bit-fusion, at most 1.43× ratios are achieved owing to the heavy additional logics of Bit-fusion.
- Energy efficiency performance: Compared with Gemmini and Bit-serial, at most 1.85× and 6.38× ratios are achieved owing to the proposed work supporting both input activations and weights for multi-precision operations.

System Performance Comparison

Fig. 14 Power breakdown of Gemmini, Bitserial, Bit-fusion and the proposed BSC accelerator under different benchmarks:(a)VGG-16, (b)ResNet-18, (c)LeNet-5.

 the proposed accelerator provides flexibility in both inputs and weights bit-width, leading to the highest reduction ratio by 6.38×, 1.85× and 1.65× compared with Bit-serial, Gemmini and Bit-fusion.

Introduction

- Bit-Split-and-Combination MAC
- Multi-precision systolic accelerator
- Systolic dataflow
- Experiment
- Conclusion

In this paper, an energy-efficient multi-precision systolic accelerator is designed

- The reconfigurable architecture supports NAS-based CNNs with 2-8 various bit-widths.
- Compared with the state-of-the-art accelerators Gemmini, Bitserial and Bit-fusion on the multi-precision CNN benchmarks, the proposed BSC accelerator achieves at least 1.18×, 5.37× and 1.46× energy efficiency.
- For area efficiency, the improvement ratio of $1.2 \times, 2.7 \times$ and $1.14 \times$ are achieved at least.
- The results show the proposed work is of great potential for multi-precision edge-computing

Thanks for your attention!