Multi-Precision Deep Neural Network Accelerator on FPGAs

Negar Neda¹, Salim Ullah², Azam Ghanbari¹, Hoda Mahdiani¹, Mehdi Modarressi¹, and Akash Kumar²

¹University of Tehran, Tehran, Iran ²Dresden University of Technology, Dresden, Germany

ASP DAC - 2022

• Outline

Introduction

Proposed Architecture

Experimental Results

Conclusion

Introduction

Deep Learning

Deep Neural Networks

Features:

- Robust against approximation 0
- Different minimum required bit-width across variant neural networks 0

Quantization	AlexNet Accuracy
16-bit fixed point	76.12
8-bit fixed point	76.10
4-bit fixed point	54.45
4-bit layer 3,4; 8-bit the rest	75.91

Motivation

- Need for multi-precision design:
 - Adjust the precision of the computation to each DNN layer
 - Multi-tenant accelerators
 - Adjust the precision of the accelerator to the model
 - Accuracy-energy trade-off
 - Temporarily give up accuracy to meet energy constraints
 - Training support
 - Support training and inference simultaneously

Motivation

• Why FPGA?

- Flexible platform to support future Neural Networks
- Inefficiency of ASIC designs on FPGAs
- Fast time to market
- LUT-based design:
 - Almost 5% of the FPGA area are DSP blocks
 - More than 60% of the FPGA are LUTs

Multi-precision Accelerator

- Reduce computation bit-width with negligible accuracy loss
- Design an FPGA-based multi-precision multiplier with adaptable data bitwidth at run-time
 - Support of 16, 8, and 4-bit computation
 - Reduce power consumption
 - Increase throughput

Proposed Achitecture

Proposed Arch.: 4-bit Mult

- 4×4-bit Multiplier as the base of fusible design
 - Recursively build 8 × 8 and 16 × 16 multiplier
- Use two 4 × 4 multipliers based on FPGA LUT
 - Area Optimized

• Approx3

(12.33% accuracy loss)

Proposed Arch.: 8 & 4-bit

Proposed Arch.: Level One Adder

Proposed Arch.: Level One Adder

Proposed Arch.: 16-bit

Proposed Arch.: MpDNN

.

()

Evaluation

- Implemented the design on Zynq7Z020
- Used MLP & CNNs to evaluate the accuracy and throughput of MpDNN
- MLP
 - ° CIFAR-Top3, IRIS, Heart Disease, Human Activity
- CNN
 - LeNet (Mnist dataset), AlexNet (ImageNet dataset)
- Two 4-bit multipliers as the base multiplier
 - Area Optimized
 - Approx3

Multipliers Analysis

Multipliers	#LUT		Delay (ns)	
	16-bit	8-bit	16-bit	8-bit
mpDNN_AO	(324)	74	(11.55)	7.27
mpDNN_Approx3	(261)	59	10.1	6.7
Area Optimized	(251)	65	9.54	6.18
Approx3	(195)	49	8.59	5.6
Xilinx-IP	293	72	7.9	б

MpDDN Analysis

Human Activity (87.2%)

MpDNN Analysis

MpDNN_AO Throughput

Compare MpDNN_AO's throughput with 128 area optimized processing elements while implementing AlexNet

MpDNN vs. BitFusion

• Inefficiency of ASIC based design for FPGA

	Critical Path Latency (ns)	#LUT
BitFusion	13.01	337
MpDNN_AO	10.5	313

Conclusion

- Variable minimum required bit-width in different neural networks & layers of one network.
- Fusible multiplier based on FPGA's LUTs
 - ° Run various networks with different data bit-width
 - Three mode of execution controlled by a control signal
 - No need to reprogram the FPGA for different bit widths
 - ° One 16×16 , four 8×8 , or sixteen 4×4 multiplication
- Throughput 3.2 to 6.75 times more than Area Optimized, with 0.2% to 4.8% accuracy loss.

Thank you for you attention! Questions?

Negar Neda – <u>negar@nyu.edu</u>

ASP-DAC, January 2022