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◉ 1-qubit states

Quantum States
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◉ 1-qubit gates ◉ 2-qubit gates

Elementary Quantum Gates
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◉ Every quantum algorithm requires a special initial quantum state

◉ Quantum state preparation (QSP) is an important task in quantum 
computing

◉ In general, QSP requires O(2n) elementary quantum gates and time

Quantum State Preparation

Restricting to special family of states

Approximate preparation

Using ancilla qubits
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◉ Equal superposition of all n-qubit states | ۧ𝑥 with Hamming weight 
wt(x) = k

◉ Exp. | ۧ𝐷2
4 =

1

6
(| ۧ1100 + | ۧ0110 + | ۧ0011 + | ۧ1001 + | ۧ0101 + | ۧ1010 )

◉ Usage: quantum sensors, quantum networking, quantum game 
theory, quantum metrology, combinatorial optimization problems

◉ State-of-the-art [1] prepares them using O(kn) gates and O(n) depth
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Dicke State
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[1] Bärtschi, Andreas, and Stephan Eidenbenz. "Deterministic preparation of dicke states." International Symposium on Fundamentals of 

Computation Theory. Springer, Cham, 2019.



◉ Equal superposition of all n-qubit states | ۧ1 ⨂𝑘 | ۧ0 ⨂𝑚 (m = n-k) by 
performing the group of cyclic permutations C(n)

◉ Exp. | ۧ𝐶2
4 =

1

4
(| ۧ1100 + | ۧ0110 + | ۧ0011 + | ۧ1001 )

◉ Uniform superposition of basis states with equal hamming weights 
and adjacent ones
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Cyclic States
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◉ Cyclic states are more versatile than Dicke states in network applications

◉ Network applications require partial symmetry rather than fully 
symmetry

◉ Cyclic states have widespread attention for tasks in quantum internet [1] 
and quantum metrology [2] 
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Motivation

[1] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. 

[2] V.Giovannetti,S.Lloyd,andL.Maccone,“Quantummetrology,” Physical Review Letters, vol. 96, no. 1, p. 010401, 2006. 



◉ Input: Cyclic state represented by #qubits = n and #ones = k
◉ #Zeros: m = n-k
◉ We assume k>=m, otherwise we need to add NOT gates in the begining

◉ Output: Quantum circuit that load the desired Cyclic state
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Problem Definition



◉ Initial state: | ۧ1…10…0

◉ Permutations: | ۧ1…10…0 , | ۧ01…10…0 ,…, | ۧ0…01…1 ,
| ۧ10…01…1 , | ۧ110…01…1 ,…, | ۧ1. . 10…01
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Proposed Method

Shift ones on n qubits

Shift zeros on n-1 qubits



◉ Apply ShiftOnes unitary on k+1 qubits

◉ Apply SO block recursively on o-1 qubits
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Construction of SO Block



◉ We need to transform 

◉ We design a quantum circuit that maps
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ShiftOnes Unitary Implementation
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◉ Apply ShiftZeros unitary on m+1 qubits

◉ Apply Sz block recursively on z-1 qubits
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Construction of SZ Block



◉ We need to transform 

◉ We design a quantum circuit that maps
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ShiftZeros Unitary Implementation

| ۧ0 ⨂𝑚| ۧ1 → | ۧ1 | ۧ0 ⨂𝑚
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𝑧−𝑚+1
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◉ We compute the number of elementary quantum gates {CNOT, Ry, NOT}

◉ SO block: m ShiftOnes

◉ SZ block: k-1 ShiftZeros

◉ #CNOT: in the worst case → 6n-15

◉ Our circuit construction require O(n) elementary gates
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Complexity

1-controlled Ry 2-controlled Ry CNOT

SO block m 0 m

SZ block 0 K-1 2k-2



◉ We compare our approach with state of the art in term of the number 
of CNOTs (CNOTs are more expensive than 1–qubit gates in NISQ)

◉ [1] and [2] only prepare 

cyclic states with k=1, 2, n-1

◉ Our method works for 

arbitrary values of k
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◉ We compare our approach in term of the number of CNOTs with [1] 
which can prepare cyclic states with arbitrary values of k

◉ When the number of qubits (n) is large, we reduce CNOTs with linear 
complexity, for all values of k . 
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Conclusion

◉ Efficient quantum state preparation is a crucial 
step to design quantum computing systems. 

◉ We restrict input space to an important family 
of quantum states, called cyclic state. 

◉ We propose an efficient algorithm to prepare 
cyclic states

◉ Our method requires linear circuit size while 
state of the art creates a circuit in exponential 
size.
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Thanks!
Any questions?

You can find me at:

◉ fereshte.mozafari@epfl.ch
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