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Scaling in Advanced Technology

Transistor Technology close to fundamental limit
TSMC 3nm FinFET, 2 nm Nanosheet by IBM
Less power, less area, higher clock speed, ...

: But does your mobile run 30% longer?
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Challenges with Advanced Technology

Increased impact of degradation
Increased variability due to quantum effects
Increased demand for reliable chips
SPICE simulations are expensive
Assumption: Transistor model available
Diminishing returns of scaling

: Move circuit design close to the edge

Jan 20, 2022 – Paul R. Genssler et al., Institute of Computer Engineering, University of Stuttgart: Design Close to the Edge 3



Our Multi-Level Approach

System on Chip

Peripheries, DRAM controller, ...

SRAM – Memory
>20% of chip area

CPU cores – Logic
>20% of chip area

Transistor degradation

Reduced hold margin

Derive degradation

Part II

Increased delay

Potential for errors

Estimate guardband

Part III

Process
variation

Aging
effects

Part I
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Background: Degradation

Design-time degradation
key contributor: variation
source: manufacturing
Gaussian distribution
constant over lifetime

Run-time degradation
key contributor: aging (BTI, HCI)
source: usage of circuit
workload-dependent
changes over lifetime

: change in electrical properties, most importantly ∆Vth

: efficient guardband design – small yet sufficient
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Background: Brain-Inspired Hyperdimensional Computing

Human Brain
Learning and pattern-based
Distributed
Embarrassingly parallel
Unreliable Components

By ManosHacker - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=16061704

Hyperdimensional Computing
Computing with patterns
HD vectors as basic symbols
Independent vector components
Robust against failures

https://medium.com/dataseries/hyperdimensional-
computing-and-its-role-in-ai-d6dc2828e6d6
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Background: Concept of Hyperdimensional Vectors

Random integer vectors A, B of dimension d

Compute Cosine similarity cos(A, B)
Bundle multiple vectors as a set
Bind vectors together

Operation Symbol cos() with input Implementation

Similarity cos(A, B) – Cosine similarity
Bundle A ⊕ B 0.7 component-wise addition
Bind A ⊗ B 0.0 component-wise multiplication
Permutation p(A) 0.0 circular shift
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Background: Concept of Hyperdimensional Vectors

Random integer vectors A, B of dimension d

Compute Cosine similarity cos(A, B)
Bundle multiple vectors as a set
Bind vectors together

dataset
map to

hyperspace

build model

inference

training set

test set
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Part I: Brain-inspired Transistor Degradation Model

Predict workload-dependent aging per transistor
Created by foundry, utilized by circuit designers
Solves confidentiality problem
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Creating a Brain-inspired Degradation Model

Voltage waveform
waveform = (V1, ..., Vl)

trace = ∆Vth,1, ..., ∆Vth,lPhysics-based
NBTI model

Training

∆Vth,i
as label

ML-based Model

Create context

Vi, ..., Vi-h ∆Vth,i-1, ..., ∆Vth,i-h

Repeat for every segment Vi

training samplei
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Results for Transistor Degradation Prediction
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Our Multi-Level Approach

System on Chip

Peripheries, DRAM controller, ...

SRAM – Memory
>20% of chip area

CPU cores – Logic
>20% of chip area

Transistor degradation

Reduced hold margin

Derive degradation

Part II

Increased delay

Potential for errors

Estimate guardband

Part III

Process
variation

Aging
effects

Part I
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Part II: Noise Resiliency in SRAM

Dominant on-chip memory
Static noise margin (SNM)
Measure “butterfly curve”
Infer ∆Vth through SNM
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Part II: Noise Resiliency in SRAM

Dominant on-chip memory
Static noise margin (SNM)
Measure “butterfly curve”
Infer ∆Vth through SNM
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Inferring Degradation through SNM
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Our Multi-Level Approach

System on Chip

Peripheries, DRAM controller, ...

SRAM – Memory
>20% of chip area

CPU cores – Logic
>20% of chip area

Transistor degradation

Reduced hold margin

Derive degradation

Part II

Increased delay

Potential for errors
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Part III: Cell Library Characterization - Traditional Approach

Standard Cell
Characterization Operating Conditions 

(Temperature, Voltage, etc.)

SPICE 
Simulations

Transistor Model 
(e.g., FinFET)

Model Calibration 
(incl. Aging (ΔVth),
Process Variation)

Standard Cell Netlists

Standard 
Cell Librarygene-

rates

Circuit Design 
(gate level netlist)

Static Timing 
Analysis

Critical Path Delay & 
Power Consumption

reports

adjust parameters

…and
observe 
impact
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Our ML approach towards Cell Library Characterization

ML-based
Standard Cell 

CharacterizationWorkload 
Dependency

Parameter 
Distribution

Standard 
Cell Library

Circuit Design 
(gate level netlist)

Static Timing 
Analysis

Critical Path Delay & 
Power Consumption

reportsDepending on 
the workflow, 
adjust selected 
set of parameters

…and
observe 
impact

Standard 
Cells

Standard 
Cells

Standard 
Cells

infer

compile &
merge

or
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tains all static 
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Prediction Results

100 101 102 103 104 105

90%

95%

100%

Mostly combinational cells with good
prediction accuracy (AND, OR, NOR, etc.)

Infrequently
used flip-flops

Frequently
used flip-flopFull adder

Large
inverter

Occurrence of cell in a RISC-V circuit

A
ve
ra
ge

pr
ed
ic
tio

n
ac
cu
ra
cy

(R
2

sc
or

e) ML prediction accuracy for different cells

10

20

30

N
um

be
r
of

tr
an
si
st
or
s
in
ce
ll

Jan 20, 2022 – Paul R. Genssler et al., Institute of Computer Engineering, University of Stuttgart: Design Close to the Edge 17



Achievable Timing Guardband Reduction
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Summary

Advanced technology challenges pessimistic workflow
ML-based and brain-inspired methods for close-to-the-edge design

System on Chip

Peripheries, DRAM controller, ...

SRAM – Memory
>20% of chip area

CPU cores – Logic
>20% of chip area

Transistor degradation

Reduced hold margin

Derive degradation

Part II

Increased delay

Potential for errors

Estimate guardband

Part III

Process
variation

Aging
effects

Part I
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Perspective on ML-based Design Flow

Foundry Circuit Designer

Calibration Data &
Physics-based Models

ML-driven Transistor
Degradation Model

ML-driven Cell
Library Characterization

Circuit Simulations

Transistor Waveforms

Transistor Degradation

Workload-specific
Standard Cell Library

ML-based
Interface Preserving

Confidentiality
train and
provide
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