

University of Stuttgart Germany

Design Close to the Edge for Advanced Technology using Machine Learning & Brain-Inspired Algorithms

> Hussam Amrouch, Florian Klemme, and <u>Paul R. Genssler</u>

ttp://www.lupinepublishers.com/oinbd/classification.php

Scaling in Advanced Technology

- Transistor Technology close to fundamental limit
- TSMC 3 nm FinFET, 2 nm Nanosheet by IBM
- Less power, less area, higher clock speed, ...
 - → But does your mobile run 30 % longer?

TSMC, ISSCC 2021; Samsung; IBM Research

Jan 20, 2022 - Paul R. Genssler et al., Institute of Computer Engineering, University of Stuttgart: Design Close to the Edge

Challenges with Advanced Technology

- Increased impact of degradation
- Increased variability due to quantum effects
- Increased demand for reliable chips
- SPICE simulations are expensive
- Assumption: Transistor model available
- Diminishing returns of scaling
 - → Move circuit design close to the edge

Our Multi-Level Approach

Background: Degradation

Design-time degradation

- key contributor: variation
- source: manufacturing
- Gaussian distribution
- constant over lifetime

Run-time degradation

- key contributor: aging (BTI, HCI)
- source: usage of circuit
- workload-dependent
- changes over lifetime

- $\textbf{\rightarrow}$ change in electrical properties, most importantly ΔV_{th}
- → efficient guardband design small yet sufficient

Background: Brain-Inspired Hyperdimensional Computing

Human Brain

- Learning and pattern-based
- Distributed
- Embarrassingly parallel
- Unreliable Components

Hyperdimensional Computing

- Computing with patterns
- HD vectors as basic symbols
- Independent vector components
- Robust against failures

https://medium.com/dataseries/hyperdimensionalcomputing-and-its-role-in-ai-d6dc2828e6d6

Jan 20, 2022 - Paul R. Genssler et al., Institute of Computer Engineering, University of Stuttgart: Design Close to the Edge

Background: Concept of Hyperdimensional Vectors

- Random integer vectors A, B of dimension d
- Compute Cosine similarity $\cos(A, B)$
- Bundle multiple vectors as a set
- Bind vectors together

```
A = 0 \ 1 \ 0 \ 1 \ B = -1 \ -1 \ 1 \ 1
```

$$A \oplus B = -1$$
 0 1 2

Operation	Symbol	cos() with input	Implementation
Similarity	$\cos(A, B)$	_	Cosine similarity
Bundle	$A \oplus B$	0.7	component-wise addition
Bind	$A\otimes B$	0.0	component-wise multiplication
Permutation	p(A)	0.0	circular shift

Background: Concept of Hyperdimensional Vectors

- Random integer vectors A, B of dimension d
- Compute Cosine similarity $\cos(A, B)$
- Bundle multiple vectors as a set
- Bind vectors together

```
A = 0 \ 1 \ 0 \ 1 \ B = -1 \ -1 \ 1 \ 1
```

$$A \oplus B = -1 \quad 0 \quad 1 \quad 2$$

Part I: Brain-inspired Transistor Degradation Model

- Predict workload-dependent aging per transistor
- Created by foundry, utilized by circuit designers
- Solves confidentiality problem

Jan 20, 2022 - Paul R. Genssler et al., Institute of Computer Engineering, University of Stuttgart: Design Close to the Edge

Creating a Brain-inspired Degradation Model

Results for Transistor Degradation Prediction

Our Multi-Level Approach

Part II: Noise Resiliency in SRAM

- Dominant on-chip memory
- Static noise margin (SNM)
- Measure "butterfly curve"
- Infer ΔV_{th} through SNM

Part II: Noise Resiliency in SRAM

- Dominant on-chip memory
- Static noise margin (SNM)
- Measure "butterfly curve"
- Infer ΔV_{th} through SNM

Inferring Degradation through SNM

Our Multi-Level Approach

Part III: Cell Library Characterization - Traditional Approach

Our ML approach towards Cell Library Characterization

Prediction Results

Achievable Timing Guardband Reduction

Jan 20, 2022 - Paul R. Genssler et al., Institute of Computer Engineering, University of Stuttgart: Design Close to the Edge

Summary

- Advanced technology challenges pessimistic workflow
- ML-based and brain-inspired methods for close-to-the-edge design

Perspective on ML-based Design Flow

Design Close to the Edge for Advanced Technology using Machine Learning and Brain-Inspired Algorithms

Hussam Amrouch, Florian Klemme, and <u>Paul R. Genssler</u> Chair of Semiconductor Test and Reliability (STAR) Institute of Computer Engineering, University of Stuttgart

Mail amrouch@iti.uni-stuttgart.de