#### **ASP-DAC 2022**

#### **Differentially Evolving Memory Ensembles**

Pareto Optimization based on Computational Intelligence for Embedded Memories on a System Level

Felix Last, Ceren Yeni & Ulf Schlichtmann



Technische Universität München



### Agenda

- I. Motivation
- II. Proposed Method
  - I. Algorithm Choice
  - II. Differential Evolution
  - III. Feasibility Repair
  - IV. NSGA-II Selection
- III. Results
- IV. Conclusion & Outlook

# Motivation (1/2)

- Memory compilers generate embedded memories
- Architectural parameters require "knob-tuning"
- Conflicting objectives:
  power, performance, and area (PPA)



• Modern ICs contain 500-10,000 memories  $\rightarrow$  substantial PPA impact

Feasibility constraints

# Motivation (2/2)

- Consider the combinatorial Pareto front on system level
- System-level optimization may yield better choice than sequential instance optimization



# Proposed Method (1/4)

 Algorithm selection from 40 choices through requirementtraceability matrix

 Match problem characteristics to algorithm characteristics

| Optimization algorithm selection requirement traceability matrix     |                      |                    |                 |                                                 |                        |                      |                    |                  |                      |            |           |                    |             |                     |                        |       |
|----------------------------------------------------------------------|----------------------|--------------------|-----------------|-------------------------------------------------|------------------------|----------------------|--------------------|------------------|----------------------|------------|-----------|--------------------|-------------|---------------------|------------------------|-------|
| Chacteristics required for<br>the problem<br>Optimization Algorithms | multi objective owe. | discrete variable. | continuous ohic | -vective function<br>high dimensional solution. | convergence to global. | computationally inc. | non-convex proble- | fast convergence | non-linear function- | robustness | stability | stochastic method. | scalibility | 80od exploration rs | executable in parallel | Score |
| Importance                                                           | 3                    | 1                  | 2               | 3                                               | 1                      | 0                    | 1                  | 3                | 1                    | 2          | 1         | 2                  | 3           | 2                   | 3                      | -     |
| Differential evolution (DE)                                          | 1                    | 1                  | 1               | 1                                               | 1                      |                      | 1                  | 1                | 1                    | 1          |           | 1                  | 1           |                     | 1                      | 25    |
| Artificial bee colony (ABC)                                          | 1                    | 1                  | 1               |                                                 | 1                      |                      | 1                  | 1                | 1                    | 1          |           | 1                  |             | 1                   |                        | 18    |
| Ant colony optimization                                              | 1                    | 1                  |                 | 1                                               | 1                      |                      | 1                  | 1                | 1                    |            |           |                    |             | 1                   |                        | 15    |
| Bat algorithm (BA)                                                   | 1                    | 1                  | 1               |                                                 | 1                      |                      | 1                  |                  | 1                    | 1          | 1         |                    |             | 1                   |                        | 14    |
| Artificial fish swarm (AFS)                                          | 1                    | 1                  | 1               |                                                 | 1                      |                      | 1                  |                  | 1                    | 1          |           |                    |             | 1                   |                        | 13    |
| Particle swarm optimization (PSO)                                    | 1                    | 1                  | 1               | 1                                               |                        |                      |                    |                  |                      |            |           |                    |             |                     | 1                      | 12    |
| Cuckoo search (CS)                                                   | 1                    | 1                  | 1               |                                                 |                        |                      |                    | 1                | 1                    |            |           |                    |             |                     |                        | 10    |
| Genetic algorithm (GA)                                               | 1                    | 1                  |                 |                                                 | 1                      |                      | 1                  |                  | 1                    |            |           | 1                  |             |                     |                        | 9     |

# Proposed Method (2/4)

- Differential Evolution
  - evolutionary algorithm
  - metaheuristic
  - population-based
  - global
  - few control parameters



# Proposed Method (3/4)

Repairing individuals to feasible compiler parameters:

| С    | В   | СМ  | Р |   | с    | В   | СМ  | Р | <br>с | В   | СМ  | Р   | <br>         |
|------|-----|-----|---|---|------|-----|-----|---|-------|-----|-----|-----|--------------|
|      | 1   | 1   | 1 | Å |      |     |     |   |       |     |     |     |              |
| 1    | 4   | 0   | 1 |   | 2    | 8   | 1   | 0 | <br>1 | 4   | 0   | 1   | <br>         |
| 1    | 1   | 1   | 1 | 1 |      |     |     |   |       |     |     |     |              |
| 0.58 | 3.4 | 0.8 | 1 |   | 1.09 | 6.6 | 0.6 | 0 | <br>1 | 3.8 | 0.3 | 0.8 | <br><b>▶</b> |

![](_page_6_Figure_3.jpeg)

A look-up table for the transformation of the parameters:

| Compiler   | $V_{th}$    | $\overline{V_{th}}$ |
|------------|-------------|---------------------|
| compiler A | low-vt      | 0                   |
| compiler A | standard-vt | 1                   |
| compiler A | high-vt     | 2                   |
| compiler B | low-vt      | 0                   |
|            |             | •••                 |

# Proposed Method (4/4)

- Selection based on Pareto dominance through NSGA-II
- Non-dominated sorting & crowding distance sorting

![](_page_7_Figure_3.jpeg)

![](_page_7_Figure_4.jpeg)

# Results (1/4)

- Experimental Setup
  - Two systems (A, B)
  - System size: 4 memories
  - Design space per memory: 50-900 candidates
  - System design space: >500M combinations
- Small systems allow exhaustive combinatorial search
  - "Golden baseline"
  - Infeasible for larger systems

# Results (2/4)

Two main control parameters of differential evolution: Differentiation constant *F*; crossover constant *CR* 

|               |     |     |    |             | Area    |             |         | Area Power    |       |       |  |
|---------------|-----|-----|----|-------------|---------|-------------|---------|---------------|-------|-------|--|
|               |     |     |    | No. of      |         | $[\mu m^2]$ |         | $[\mu A/MHz]$ |       |       |  |
| Test Case No. | F   | CR  | NP | Generations | min     | max         | mean    | min           | max   | mean  |  |
| 1             | 0.4 |     |    |             | 169.390 | 172.477     | 170.770 | 4.289         | 4.433 | 4.369 |  |
| 2             | 0.8 | 0.5 |    |             | 164.405 | 174.305     | 168.910 | 4.231         | 4.409 | 4.322 |  |
| 3             | 1.2 |     |    |             | 163.431 | 172.311     | 167.992 | 4.216         | 4.349 | 4.285 |  |
| 4             | 0.4 |     |    |             | 166.194 | 173.493     | 170.945 | 4.246         | 4.386 | 4.292 |  |
| 5             | 0.8 | 0.7 | 10 | 20          | 167.508 | 178.270     | 172.003 | 4.285         | 4.506 | 4.394 |  |
| 6             | 1.2 |     |    |             | 168.439 | 180.569     | 172.514 | 4.298         | 4.471 | 4.368 |  |
| 7             | 0.4 |     |    |             | 170.925 | 176.770     | 174.107 | 4.303         | 4.432 | 4.357 |  |
| 8             | 0.8 | 0.9 |    |             | 167.378 | 176.409     | 172.200 | 4.284         | 4.461 | 4.374 |  |
| 9             | 1.2 |     |    |             | 168.554 | 177.227     | 173.326 | 4.333         | 4.512 | 4.402 |  |

### Results (3/4)

System A

Pareto fronts found by proposed method and "golden baseline" for two systems of memories

![](_page_10_Figure_2.jpeg)

#### System B

#### Results (4/4)

Performance indicators for System A

|                          | Exhaustive Search  | Proposed Method           |
|--------------------------|--------------------|---------------------------|
| # solutions evaluated    | 644,972,544        | 2,000                     |
| RAM Usage                | >100GB             | <<1GB                     |
| Runtime                  | 20min              | 9min                      |
| Feasibility              | Small systems only | Scalable to large systems |
| Distance from best area  | 0%                 | 0.54%                     |
| Distance from best power | 0%                 | 0.75%                     |

#### **Conclusion & Outlook**

- Proposed method: Differential Evolution + NSGA-II selection
- Enablement of system optimization previously infeasible
- < 0.55% distance from best area, <0.75% from best power</p>

- Incorporation of hard constraints on the objective function values
- Dynamic adjustment of control parameters
- Perform experiments on large-scale problems
- Study effect of repair on diversity