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Motivation (1/2)

 Memory compilers generate 
embedded memories

 Architectural parameters 
require “knob-tuning”

 Conflicting objectives:
power, performance, and area (PPA)

 Modern ICs contain 500-10,000 memories  substantial PPA impact

 Feasibility constraints
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Motivation (2/2)

 Consider the combinatorial 
Pareto front on system 
level

 System-level optimization 
may yield better choice 
than sequential 
instance optimization

… is objectively dominated 
on the system level.

The result of choosing the 
balanced trade-off per 

memory instance…
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Proposed Method (1/4)

 Algorithm 
selection from 
40 choices 
through 
requirement-
traceability 
matrix
Match problem 

characteristics 
to algorithm 
characteristics
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Proposed Method (2/4)

Differential Evolution
• evolutionary algorithm

• metaheuristic

• population-based

• global

• few control parameters
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Proposed Method (3/4)
Repairing individuals to feasible compiler parameters:

A look-up table for the transformation of the parameters: 
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Proposed Method (4/4)

 Selection based on 
Pareto dominance 
through NSGA-II

 Non-dominated 
sorting & crowding 
distance sorting

3
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Results (1/4)

 Experimental Setup
• Two systems (A, B)

• System size: 4 memories

• Design space per memory:  50-900 candidates

• System design space: >500M combinations

 Small systems allow exhaustive combinatorial search
• “Golden baseline”

• Infeasible for larger systems
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Results (2/4)
Two main control parameters of differential evolution: 
Differentiation constant 𝐹𝐹; crossover constant 𝐶𝐶𝐶𝐶
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Results (3/4)
Pareto fronts found by proposed method and “golden baseline” for two systems of memories

 System A  System B



12

Results (4/4)

Exhaustive Search Proposed Method

# solutions evaluated 644,972,544 2,000

RAM Usage >100GB <<1GB

Runtime 20min 9min

Feasibility Small systems only Scalable to large systems

Distance from best area 0% 0.54%

Distance from best power 0% 0.75%

Performance indicators for System A
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Conclusion & Outlook 

 Proposed method: Differential Evolution + NSGA-II selection

 Enablement of system optimization – previously infeasible 

 < 0.55% distance from best area, <0.75% from best power

 Incorporation of hard constraints on the objective function values  

 Dynamic adjustment of control parameters

 Perform experiments on large-scale problems

 Study effect of repair on diversity
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