
EdgenAI: Distributed Inference with

Local Edge Devices and Minimal

Latency

Maedeh Hemmat, Azadeh Davoodi, and Yu Hen Hu

Department of Electrical and Computer Engineering

University of Wisconsin - Madison

2

Background

• Significant increase in memory and computational resources

• Relying heavily on sensors and IoT devices to gather data

– Transferring raw data to cloud for processing

– Incurring latency for real-time application

3

Motivation

• Solution: Distributed inference of complex DNNs across

multiple edge devices

Alleviate or remove reliance to cloud

Avoid sending large data to cloud

Incurring significant latency and communication

overheads

• This work is inspired by two motivations:

– Minimizing the overall latency of inference in a distributed network

• Coupled with reducing the communication overheads

– Utilizing as many edge devices as available

• The number of IoT devices are projected to grow into billions[1]

[1] Deeplearningmarketreport ,http://www.grandviewresearch.com/industry- analysis/deeplearning-market.

4

Solution: EdgenAI

• EdgenAI : Distributed inference with local devices and

minimal latency

• Contributions:

– Utilizing many parallel independent-running edge devices

– Minimizing communication overheads with edge devices

communicating only once to a back-end device

– Maintaining accuracy of the distributed network

• Partitioning the original network across output classes

• Configuring each SNN to return a ‘Don’t know’ response when needed

5

EdgenAI: Overview

6

• In EdgenAI, following aspects should be considered:

1. Generation of ‘Don’t Know’ response

• Each SNN is a reduced version of the original network

2. Design of aggregator

• The aggregator is responsible to make final prediction

3. Efficient generation of SNNs

• The SNNs are generated from decomposing a complex DNN

across output classes

EdgenAI: Overview

7

• Each SNN is a reduced version of the original network

Generating ‘Don’t Know’

Prediction: Cat

Prob: 0.6

Prediction: dog

Prob: 0.7

• Normalized entropy (NE) metric is used to meaningfully

compare the results from different SNNs

– Used to define a ‘Don’t Know’ response

Relevant input

Irrelevant input

8

• SNNs are configured to predict if the received input is

relevant or irrelevant

• NE is a smaller quantity for relevant inputs compared to

irrelevant ones

• A ‘Don’t Know’ response defined for each SNN by

comparing its NE against a threshold

Generating ‘Don’t Know’

NE < Threshold

NE > Threshold

• The input is rejected by

SNN

• NE is set to one and

sent to aggregator

• SNN makes a prediction

• NE and prediction are

sent to aggregator

9

• EdgenAI needs to calculate a threshold per SNN as a pre-

processing step

• An algorithm is proposed to find the threshold

• The threshold is found such that the network is good at both

making an inference for the relevant input and rejecting the

irrelevant inputs
• For more details, please refer to the paper

Generating ‘Don’t Know’

10

Aggregator Design

• Aggregator is responsible to make the final prediction

– It receives the normalized entropy and the class with highest

probability from each SNN

• Naïve approach is to eliminate the uncertain SNNs and pick

the class with the lowest NE

– Can’t maintain accuracy, specially with high number of SNNs

• We propose to implement aggregator as a lightweight neural

network architecture

– The aggregator has 3 layers with at most 60 neurons

– It is trained on data collected from running distributed inference

across SNNs

11

SNN Generation

• SNNs are generated via a two-step pre-processing

approach:

– Class partitioning

– Class-aware pruning [2] • Class-aware pruning:

– Pruning the network

for only a subset of

classes

– Exploiting the

correlation between

neurons and output

classes

[2] CAP’NN: Class-aware Personalized Neural Network Inference, DAC, 2020.

12

SNN Generation

• To partition a network with 𝐶 classes on n devices, we have
|𝐶|
|𝑆|

partition candidates (𝑆 =
|𝐶|

𝑛
)

• It is not feasible to implement all partitioning candidates and

evaluate their performance

– It requires to first prune the original network and generate SNNs

– It requires to find the NE threshold for each SNN

– It requires to measure the classification accuracy of each candidate

• We propose a scheme to efficiently estimate NE of SNNs

– Only top 5% of candidates are implemented and evaluated

– More details can be found in the paper

13

• Effectiveness of EdgenAI is assessed on VGG-16 and

ResNet-152 networks

• Different variant of the networks are generated and used as

base models

– The base models have different number of output classes

• |C| = 10, 20, 50, 70, 100

• Each base model is obtained by pruning the original model for

a subset of classes

• Implemented base models with EdgenAI when number of

devices are varied

Results

14

• Model size reduction:

– Model size corresponds to the largest SNN among all SNNs

Results

• Model size is reduced for all combination of number of

classes and number of devices

15

• Accuracy:

– Top-1 accuracy of the network with distributed implementation

Results

16

• Latency measurement:

– Inference latency is summation of 3 components:

• Latency of the slowest SNN

• Latency of the wireless communication network

• Latency of the aggregator

– We construct an analytical model to estimate the latency of SNNs and

aggregator

• Number of memory accesses and MAC operations are estimated based on

the network architecture

– Latency of the communication network is measured for the

communication bandwidth of 100 Megabits per second

Results

17

• We measure latency of EdgenAI on two hardware platforms:

– Edge devices with at most 150 MB on-chip storage and no off-chip

storage

– Microcontrollers with at most 500 KB on-chip storage and a shared off-

chip storage

• The platforms have different number of on-chip and off-chip

memory accesses and hence different latency

• Latency of EdgenAI is compared against a recent work [3]

Results

[3] Fully distributed deep learning inference on resource- constrained edge devices, International Conference on

Embedded Computer Systems, 2019.

18

• VGG-16:

Results

• The speedup is increased with increase in number of devices

– The communication overhead grows exponentially in [3] with increase

in number of devices

• Speedup of 17X (5.5X) on platform 1 (platform 2) for VGG-16

with 100 output classes

19

• We proposed EdgenAI to enable distributed inference of

complex DNNs on local edge devices with minimal latency

• The effectiveness of EdgenAI is evaluated on VGG-16 and

ResNet-152 networks

• EdgenAI reduces per-device model size and latency

overheads while maintaining accuracy

– up to 50% model size reduction and 17X speedup for a variant of

VGG-16 with 100 output classes on 20 devices

Conclusions

	 EdgenAI: Distributed Inference with Local Edge Devices and Minimal Latency
	Background
	Motivation
	Solution: EdgenAI
	EdgenAI: Overview
	EdgenAI: Overview
	 Generating ‘Don’t Know’
	 Generating ‘Don’t Know’
	 Generating ‘Don’t Know’
	Aggregator Design
	SNN Generation
	SNN Generation
	Results
	Results
	Results
	Results
	Results
	Results
	Conclusions

