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« Significant increase in memory and computational resources

* Relying heavily on sensors and loT devices to gather data
— Transferring raw data to cloud for processing
— Incurring latency for real-time application



Motivation

« Solution: Distributed inference of complex DNNs across
multiple edge devices

Alleviate or remove reliance to cloud
Avoid sending large data to cloud

@ Incurring significant latency and communication
overheads

« This work Is inspired by two motivations:

— Minimizing the overall latency of inference in a distributed network
« Coupled with reducing the communication overheads

— Utilizing as many edge devices as available
« The number of 0T devices are projected to grow into billions[1]

[1] Deeplearningmarketreport ,http://www.grandviewresearch.com/industry- analysis/deeplearning-market.



Solution: Edge"Al

« Edge"Al: Distributed inference with local devices and
minimal latency

 Contributions:
— Utilizing many parallel independent-running edge devices

— Minimizing communication overheads with edge devices
communicating only once to a back-end device

— Maintaining accuracy of the distributed network
 Partitioning the original network across output classes
» Configuring each SNN to return a ‘Don’t know’ response when needed




Edge"Al: Overview
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Edge"Al: Overview

« In EdgeAl, following aspects should be considered:

1. Generation of ‘Don’t Know’ response
« Each SNN is a reduced version of the original network

2. Design of aggregator
«  The aggregator is responsible to make final prediction

3. Efficient generation of SNNs

«  The SNNs are generated from decomposing a complex DNN
across output classes



Generating ‘Don’t Know’

« Each SNN is a reduced version of the original network
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Prob: 0.7 Irrelevant input

— Prediction: dog -

* Normalized entropy (NE) metric is used to meaningfully
compare the results from different SNNs
— Used to define a ‘Don’t Know’ response



Generating ‘Don’t Know’

 SNNs are configured to predict if the received input is
relevant or irrelevant

* NE is a smaller quantity for relevant inputs compared to
Irrelevant ones

A ‘Don’t Know’ response defined for each SNN by
comparing its NE against a threshold

 SNN makes a prediction
 NE and prediction are
sent to aggregator

« The input is rejected by
SNN

 NE is set to one and
sent to aggregator




Generating ‘Don’'t Know’

« Edge"Al needs to calculate a threshold per SNN as a pre-
processing step

« An algorithm is proposed to find the threshold

« The threshold is found such that the network is good at both
making an inference for the relevant input and rejecting the

Irrelevant inputs
« For more details, please refer to the paper




Aggregator Design

« Aggregator is responsible to make the final prediction

— It receives the normalized entropy and the class with highest
probability from each SNN

* Nalive approach is to eliminate the uncertain SNNs and pick

the class with the lowest NE
— Can’t maintain accuracy, specially with high number of SNNs

« We propose to implement aggregator as a lightweight neural

network architecture
— The aggregator has 3 layers with at most 60 neurons
— It is trained on data collected from running distributed inference
across SNNs



SNN Generation

 SNNs are generated via a two-step pre-processing
approach:

— Class partitioning

— Class-aware pruning [2] « Class-aware pruning:

— Pruning the network
for only a subset of
classes

— Exploiting the
correlation between
neurons and output
classes
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[2] CAP’NN: Class-aware Personalized Neural Network Inference, DAC, 2020.



SNN Generation

« To partition a network with |C| classes on n devices, we have

|C| . . . ﬂ
(ISI) partition candidates (|S| = -

 Itis not feasible to implement all partitioning candidates and
evaluate their performance
— It requires to first prune the original network and generate SNNs
— It requires to find the NE threshold for each SNN
— It requires to measure the classification accuracy of each candidate

* We propose a scheme to efficiently estimate NE of SNNs
— Only top 5% of candidates are implemented and evaluated
— More details can be found in the paper



Results

« Effectiveness of Edge"Al is assessed on VGG-16 and
ResNet-152 networks

 Different variant of the networks are generated and used as
base models

— The base models have different number of output classes
. |C| =10, 20, 50, 70, 100

« Each base model is obtained by pruning the original model for
a subset of classes

* Implemented base models with Edge"Al when number of
devices are varied



Results

 Model size reduction:
— Model size corresponds to the largest SNN among all SNNs
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e Model size is reduced for all combination of number of
classes and number of devices



Results

 Accuracy:
— Top-1 accuracy of the network with distributed implementation

Base Base 2 5 10 15 20
Model Accuracy | SNNs | SNNs | SNNs | SNNs | SNNs
VGG-16
10 classes 88.3 87.8 86.7 86.2 - -
20 classes 87.3 86.7 87.1 86.3 86.1 85.8
50 classes 85.1 84.9 84.7 83.1 83.3 83.5
70 classes 84.1 843 83.9 83.3 83.1 83.2
100 classes 82.4 81.9 81.6 82.1 82.2 82.3
ResNet-152
10 classes 88.6 87.5 87.1 86.7 - -
20 classes 87.9 87.2 86.8 86.4 86.1 86.3
50 classes 87.1 87.3 86.5 86.3 86.8 86.1
_70 classes _| _ _85.6_ _ _|_ ¢ 83.1 | _853__|_848_| 843 _|_84.6_
: 100 classes 84.3 84.1 83.8 83.5 83.4 83.2 :




Results

 Latency measurement:

— Inference latency is summation of 3 components:
« Latency of the slowest SNN

« Latency of the wireless communication network
« Latency of the aggregator

— We construct an analytical model to estimate the latency of SNNs and
aggregator

« Number of memory accesses and MAC operations are estimated based on
the network architecture

— Latency of the communication network is measured for the
communication bandwidth of 100 Megabits per second



Results

* We measure latency of Edge"Al on two hardware platforms:

— Edge devices with at most 150 MB on-chip storage and no off-chip
storage

— Microcontrollers with at most 500 KB on-chip storage and a shared off-
chip storage

« The platforms have different number of on-chip and off-chip
memory accesses and hence different latency

« Latency of Edge"Al is compared against a recent work [3]

[3] Fully distributed deep learning inference on resource- constrained edge devices, International Conference on
Embedded Computer Systems, 2019.



Results

« VGG-16:
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« The speedup is increased with increase in number of devices

— The communication overhead grows exponentially in [3] with increase
In number of devices

« Speedup of 17X (5.5X) on platform 1 (platform 2) for VGG-16
with 100 output classes




Conclusions

* We proposed Edge"Al to enable distributed inference of
complex DNNs on local edge devices with minimal latency

« The effectiveness of Edge"Al is evaluated on VGG-16 and
ResNet-152 networks

« Edge"Al reduces per-device model size and latency
overheads while maintaining accuracy

— up to 50% model size reduction and 17X speedup for a variant of
VGG-16 with 100 output classes on 20 devices
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