
NEURAL NETWORK PRUNING AND FAS T TRAINING FOR 
DRL-BAS ED UAV TRAJECTORY PLANNING

Yilan Li, Haowen Fang, Mingyang Li, Yue Ma, Qinru Qiu
Department of Electrical Engineering & Computer Science

Syracuse University



Introduction

▪ Autonomous trajectory planning for unmanned aerial vehicles(UAVs) requires on-
board embedded system as well as real-time computation

▪ This has been considered as optimization problem and Deep Reinforcement 
Learning(DRL) has been applied to solved it



Motivation

▪ The payload capacity of small UAVs imposes stringent constraints on the 
size/weight and energy dissipation of the onboard computing system

❑the computing capabilities vs the real-time computation

❑faster embedded processors

❑more efficient computing models 

▪Most of the existing pruning works apply pruning on fully trained model

❑three-step process, i.e., training, pruning, and re-training, has high computation 
and memory complexity. 

❑DRL training is more time consuming



Contribution

▪ Improve the DRL training of drone trajectory planning for model compression

❑A DRL model that generates an energy-efficient collision-free trajectory 

❑A new reward function and stochastic action selection technology are proposed to 
improve the DRL training convergence

❑A framework that integrates Alternating Direction Method of Multipliers (ADMM) 
based structured weight pruning and DRL training.

❑The optimized layer wise compression ratio is studied as a general guideline for 
structured weight pruning for the deep Q-network.



Trajectory planning for Multi-rotor UAVs

▪ A two-level optimization framework

❑The upper level DRL model generate a 
sequences of waypoints

❑The lower level applies non-linear 
optimization to generate a smooth 
trajectory 

▪ Input: 

❑10x10x10 voxel representation of the 
environment

❑UAV status consisting of 3-dimensional 
position, velocity and acceleration 

▪Output:

❑Probability of 26 possible next waypoint 
actions

the upper level the lower level



Improving DRL convergence speed – Fast DRL

▪ Redefine reward function 𝐺 as a fusion of a navigation reward 𝒩𝑟 and a 
navigation effort 𝒩𝑒 .

▪ The Nr is proportional to the probability that the current UAV navigation 
direction θ is the optimal direction መ𝜃 :

𝒩𝑟 = 𝑓 𝜃; መ𝜃, Σ, 𝑎, 𝑏
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𝜃 is the current UAV navigation direction

𝜙() is the probability density function of normal distribution 𝒩 መ𝜃, Σ , 

Φ() is the cumulative distribution of 𝒩 መ𝜃, Σ

𝜃 and መ𝜃 are both two-dimensional vectors consisting of polar angle መ𝜃1 and azimuthal angle 
መ𝜃2

𝑎 and 𝑏 are lower and upper bounds of random variables



Improving DRL convergence speed

Then the reward 𝐺 is defined as:

𝐺 𝜃 = 1 − 𝑔 𝑔
𝒩𝑟 𝜃

𝒩𝑒 𝜃
𝑠. 𝑡. 𝑔 ∈ [0, 1]

where g as the gain of fusion, and a navigation effort 𝒩𝑒 .

The variance can be obtained as:
𝑉𝑎𝑟 𝐺 𝜃 = 1 − 𝑔2 𝑉𝑎𝑟 𝒩𝑒 𝜃 + 𝑔2𝑉𝑎𝑟(𝒩𝑟 𝜃 )

Finally, we can get 𝑔 as:

𝑔 =
𝑡𝑟[𝐶𝑜𝑣(𝒩𝑒 𝜃 )]

𝑡𝑟 𝐶𝑜𝑣 𝒩𝑟 𝜃 + 𝑡𝑟[𝐶𝑜𝑣(𝒩𝑒 𝜃 )]

where 𝑡𝑟 represents trace of the covariance matrix

▪ Stochastic action exploration during DRL training

❑ When UAV fails it mission, the model rollback to last step, stochastically select an 
action

❑ Furthermore, the model will randomly choose the action of the top M actions with 
the highest value



Experimental Results I

▪ Impact of convergence speed by applying proposed fast DRL. 

❑ The training effort needed of a fully trained model reduces 34.14%
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Neural network pruning in deep learning

▪ ADMM is widely used in structured weight compression for deep neural 
networks(DNNs)

▪We adopt ADMM to prune DRL model to reduce time complexity

▪ Structured weight pruning strategies:

❑ Filter pruning

❑ Channel pruning

❑ Column pruning

▪ Filter pruning and channel pruning are more accessible and hardware friendly
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Overall flow of pruning framework

▪ Apply structured weight compression at early iterations of DRL training of the 
original model

Trajectory planning Masked retrain

Control thrust

Waypoints

Control thrust Waypoints

Initial training ADMM weight pruning



Early phase integrated weight compression

▪ The goal of weight pruning can be defined as:
min
(𝑊,𝑏)

𝑓(𝑊, 𝑏)

𝑠. 𝑡. 𝑊 = {𝑤𝑖}𝑖=0
𝐿−1, 𝑏 = {𝑏𝑖}𝑖=0

𝐿−1

𝑤𝑖 ∈ 𝑠𝑖 , 𝑖 = 0,… , 𝐿 − 1

▪ The objective function is:  
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▪ Finally, the optimization problem can be 
decomposed into two subproblems:

min
(𝑊,𝑏)

𝑓(𝑊, 𝑏) +෍
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𝐿−1
𝜌𝑖
2
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2)

min
𝑧𝑖

෍

𝑖=0
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2)

▪ Each time after the ADMM prune converges, a 
pruned model will be simulated, and the replay 
buffer will be updated

An iterative prune-restore procedure



Experimental Results II

▪ Comparing different layer-wise pruning combinations

❑ All the experiments are built on top of the same partially trained initial model with 
success rate of 87.5%

❑ The original model achieves 96.8% success rate.

❑ The system increases the success rate to 97.3% with 70% weight reduction in conv2 
layer and 82% reduction in conv3 layer increases success rate to 97.3%.

❑ With a marginal success rate loss of 1.8% compared with unpruned model, a total 
sparsity of 73.44% is achieved, translating into 3.764x weight pruning.

Structured 
pruning

Pruned layers Prune 
rate

Success 
rateconv1 conv2 conv3 fc1 fc2

Filter - - - - - - 96.80%

Filter - - 50% 50% -
1.460x 95.60%

Channel - - 50% 50% -

Filter 50% 50% 50% 50% 50%
2.507x 95.00%

Channel - - 50% 50% -

Filter - 70% 82% - - 3.045x 97.30%

Filter 10% 70% 80% 80% 50% 3.764x 95.00%



Experimental Results III

▪ How the selection of the initial model impact the training cost and success 
rate

❑ All the four cases has the same prune ratio(70% weight reduction in conv2 layer 
and 82% reduction in conv3 layer ), but different success rate when start pruning

❑ The best success rate increases to 97.3%, and the total FLOPs for both training and 
pruning is reduced by 33.33%

❑ With a marginal success rate loss of 2.1% compared with best model, we can start 
pruning when the pretrained model reaches 49.7% success rate. The total FLOPs 
drop to 3.009e+13 which is a decrease of 79.17%

Success rate 
of initial 
model

Success rate 
after pruning

Pretrain FLOPs Weight 
pruning 
FLOPs

Total training 
FLOPs

Conv layers FC layers

96.8% - 1.377e+14 2.182e+12 - 1.399e+14

96.8% 97.1% 1.377e+14 2.182e+12 9.401e+11 1.409e+14

87.5% 97.3% 9.182e+13 1.455e+12 9.401e+11 9.422e+13

65.4% 96.7% 4.591e+13 7.275e+11 9.401e+11 4.758e+13

49.7% 95.2% 2.870e+13 4.549e+11 9.401e+11 3.009e+13



Experimental Results IV

▪ Comparing the best pruned model with the prior work

❑ The unpruned fast DRL 

➢ success rate of 96.8%, which is higher than the original model.

➢ The average number of selected waypoints is 25.56% less than the original 
model, with a 47.3% FLOPs decrease.

❑ The pruned model

➢ success rate of 97.3%.

➢ The average number of selected waypoints is 23.11% less than the original 
model, with a 57.18% FLOPs decrease.

➢ The inference time decrease from 2.414ms to 1.427ms, having 40.8% reduction

Success rate of 
initial model

Prune
rate

Model 
sparsity

Success rate Achieve rate
Average 

waypoints
Inference FLOPs

Average measured 
inference time(ms)

prior work - 0% 95.6% 96% 9.0 1.844e+7 2.454

Un-pruned of 
our work

- 0% 96.8% 98.0% 6.7 9.716e+6 2.414

Our work 3.045x 67.16% 97.3% 98.6% 6.92 4.160e+6 1.427



Conclusion

▪We present an early-phase integrated neural network compression for DRL 
based trajectory planning system.

▪ A new reward function with stochastic action exploration helps improving the 
convergence speed

▪ An early phase integrated structured weight compression technique is 
introduced.

▪ The pruned model not only saves training effort, but also speeds up the 
inference time
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