NEURAL NETWORK PRUNING AND FAST TRAINING FOR DRL-BASED UAV TRAJECTORY PLANNING

Yilan Li, Haowen Fang, Mingyang Li, Yue Ma, Qinru Qiu Department of Electrical Engineering & Computer Science Syracuse University

Introduction

- Autonomous trajectory planning for unmanned aerial vehicles(UAVs) requires onboard embedded system as well as real-time computation
- This has been considered as optimization problem and Deep Reinforcement Learning(DRL) has been applied to solved it

Motivation

 The payload capacity of small UAVs imposes stringent constraints on the size/weight and energy dissipation of the onboard computing system

The computing capabilities vs the real-time computation

□faster embedded processors

□more efficient computing models

• Most of the existing pruning works apply pruning on fully trained model

□three-step process, i.e., training, pruning, and re-training, has high computation and memory complexity.

DRL training is more time consuming

Contribution

Improve the DRL training of drone trajectory planning for model compression

□A DRL model that generates an energy-efficient collision-free trajectory

A new reward function and stochastic action selection technology are proposed to improve the DRL training convergence

- A framework that integrates Alternating Direction Method of Multipliers (ADMM) based structured weight pruning and DRL training.
- The optimized layer wise compression ratio is studied as a general guideline for structured weight pruning for the deep Q-network.

Trajectory planning for Multi-rotor UAVs

• A two-level optimization framework

The upper level DRL model generate a sequences of waypoints

The lower level applies non-linear optimization to generate a smooth trajectory

- □10x10x10 voxel representation of the environment
- □UAV status consisting of 3-dimensional position, velocity and acceleration
- Output:

Probability of 26 possible next waypoint actions

Improving DRL convergence speed – Fast DRL

- Redefine reward function G as a fusion of a navigation reward \mathcal{N}_r and a navigation effort \mathcal{N}_e .
- The Nr is proportional to the probability that the current UAV navigation direction θ is the optimal direction $\hat{\theta}$:

$$\mathcal{N}_{r} = f(\theta; \hat{\theta}, \Sigma, a, b) \qquad \qquad \mu = \hat{\theta} = (\hat{\theta}_{1}, \hat{\theta}_{2}) \\ = \frac{\phi((\theta - \mu), \Sigma)}{\Phi((b - \mu), \Sigma) - \Phi((a - \mu), \Sigma)} \qquad \qquad a = \hat{\theta} - \frac{\pi}{2}, b = \hat{\theta} + \frac{\pi}{2} \\ a \le \theta \le b$$

 θ is the current UAV navigation direction

 ϕ () is the probability density function of normal distribution $\mathcal{N}(\hat{\theta}, \Sigma)$,

 Φ () is the cumulative distribution of $\mathcal{N}(\hat{\theta}, \Sigma)$

- θ and $\hat{\theta}$ are both two-dimensional vectors consisting of polar angle $\hat{\theta}_1$ and azimuthal angle $\hat{\theta}_2$
- *a* and *b* are lower and upper bounds of random variables

Improving DRL convergence speed

Then the reward G is defined as:

$$G(\theta) = \begin{bmatrix} 1 - g & g \end{bmatrix} \begin{bmatrix} \mathcal{N}_r(\theta) \\ \mathcal{N}_e(\theta) \end{bmatrix} s.t. \ g \in \begin{bmatrix} 0, & 1 \end{bmatrix}$$

where g as the gain of fusion, and a navigation effort \mathcal{N}_e .

The variance can be obtained as: $Var(G(\theta)) = (1 - g^2)Var(\mathcal{N}_e(\theta)) + g^2Var(\mathcal{N}_r(\theta))$

Finally, we can get g as:

$$g = \frac{tr[Cov(\mathcal{N}_e(\theta))]}{tr[Cov(\mathcal{N}_r(\theta))] + tr[Cov(\mathcal{N}_e(\theta))]}$$

where tr represents trace of the covariance matrix

- Stochastic action exploration during DRL training
 - When UAV fails it mission, the model rollback to last step, stochastically select an action
 - Furthermore, the model will randomly choose the action of the top M actions with the highest value

Experimental Results I

Impact of convergence speed by applying proposed fast DRL.
The training effort needed of a fully trained model reduces 34.14%

Neural network pruning in deep learning

- ADMM is widely used in structured weight compression for deep neural networks(DNNs)
- We adopt ADMM to prune DRL model to reduce time complexity
- Structured weight pruning strategies:
 - Filter pruning
 - Channel pruning
 - Column pruning

Filteropyuningmandizehannel pruning are more accessible and handware friendly

Overall flow of pruning framework

 Apply structured weight compression at early iterations of DRL training of the original model

Early phase integrated weight compression

• The goal of weight pruning can be defined as: $\min_{\substack{(W,b)\\(W,b)}} f(W,b)$ $s.t. W = \{w_i\}_{i=0}^{L-1}, b = \{b_i\}_{i=0}^{L-1}$ $w_i \in s_i, \quad i = 0, \dots, L-1$

- The objective function is: $f(W,b) = \frac{1}{|batch| \cdot \mathcal{A}|} \sum_{j \in batch} \max(\sum_{a=0}^{\mathcal{A}-1} |q_{aj} - \hat{q}_{aj}|, \sum_{a=0}^{\mathcal{A}-1} (q_{aj} - \hat{q}_{aj})^2) + \sum_{i=0}^{L-1} ||w_i||_F^2$
- Finally, the optimization problem can be decomposed into two subproblems: $\sum_{i=1}^{L-1} \rho_i$

$$\min_{W,b)} f(W,b) + \sum_{i \in \mathcal{Q}_1} \frac{\rho_i}{2} (\|w_i - z_i + \mu_i\|_F^2 + \lambda \|b_i\|_F^2)$$

$$\min_{z_i} \sum_{i=0}^{L-1} f_i(z_i) + \sum_{i=0} \frac{\rho_i}{2} (\|w_i - z_i + \mu_i\|_F^2 + \lambda \|b_i\|_F^2)$$

 Each time after the ADMM prune converges, a pruned model will be simulated, and the replay buffer will be updated

An iterative prune-restore procedure

Experimental Results II

- Comparing different layer-wise pruning combinations
 - All the experiments are built on top of the same partially trained initial model with success rate of 87.5%
 - □ The original model achieves 96.8% success rate.
 - The system increases the success rate to 97.3% with 70% weight reduction in conv2 layer and 82% reduction in conv3 layer increases success rate to 97.3%.
 - With a marginal success rate loss of 1.8% compared with unpruned model, a total sparsity of 73.44% is achieved, translating into 3.764x weight pruning.

Structured pruning	Pruned layers					Prune	Success
	conv1	conv2	conv3	fc1	fc2	rate	rate
Filter	-	-	-	-	-	-	96.80%
Filter	-	-	50%	50%	-	1.460%	95.60%
Channel	-	-	50%	50%	-	1.400x	
Filter	50%	50%	50%	50%	50%	2 507	95.00%
Channel	-	-	50%	50%	-	2.3078	
Filter	-	70%	82%	-	-	3.045x	97.30%
Filter	10%	70%	80%	80%	50%	3.764x	95.00%

Experimental Results III

- How the selection of the initial model impact the training cost and success rate
 - All the four cases has the same prune ratio(70% weight reduction in conv2 layer and 82% reduction in conv3 layer), but different success rate when start pruning
 - The best success rate increases to 97.3%, and the total FLOPs for both training and pruning is reduced by 33.33%
 - With a marginal success rate loss of 2.1% compared with best model, we can start pruning when the pretrained model reaches 49.7% success rate. The total FLOPs drop to 3.009e+13 which is a decrease of 79.17%

Success rate of initial	Success rate after pruning	Pretrair	1 FLOPs	Weight pruning	Total training FLOPs	
model		Conv layers	FC layers	FLOF5		
96.8%	-	1.377e+14	2.182e+12	-	1.399e+14	
96.8%	97.1%	1.377e+14	2.182e+12	9.401e+11	1.409e+14	
87.5%	97.3%	9.182e+13	1.455e+12	9.401e+11	9.422e+13	
65.4%	96.7%	4.591e+13	7.275e+11	9.401e+11	4.758e+13	
49.7%	95.2%	2.870e+13	4.549e+11	9.401e+11	3.009e+13	

Experimental Results IV

- Comparing the best pruned model with the prior work
 - $\hfill\square$ The unpruned fast DRL
 - » success rate of 96.8%, which is higher than the original model.
 - The average number of selected waypoints is 25.56% less than the original model, with a 47.3% FLOPs decrease.
 - The pruned model
 - » success rate of 97.3%.
 - The average number of selected waypoints is 23.11% less than the original model, with a 57.18% FLOPs decrease.
 - > The inference time decrease from 2.414ms to 1.427ms, having 40.8% reduction

Success rate of initial model	Prune rate	Model sparsity	Success rate	Achieve rate	Average waypoints	Inference FLOPs	Average measured inference time(ms)
prior work	-	0%	95.6%	96%	9.0	1.844e+7	2.454
Un-pruned of our work	-	0%	96.8%	98.0%	6.7	9.716e+6	2.414
Our work	3.045x	67.16%	97.3%	98.6%	6.92	4.160e+6	1.427

Conclusion

- We present an early-phase integrated neural network compression for DRL based trajectory planning system.
- A new reward function with stochastic action exploration helps improving the convergence speed
- An early phase integrated structured weight compression technique is introduced.
- The pruned model not only saves training effort, but also speeds up the inference time

THANK YOU!