

High-Correlation 3D Routability Estimation for Congestion-guided Global Routing

Miaodi Su¹, Hongzhi Ding¹, Shaohong Weng¹, Changzhong Zou¹, Zhonghua Zhou², Yilu Chen¹,

Jianli Chen³ and Yao-Wen Chang⁴

¹Fuzhou University

²The University of British Columbia

³Fudan University

⁴National Taiwan University

THE UNIVERSITY OF BRITISH COLUMBIA

Introduction

Problem Formulation

Routability Prediction

Congestion-guided Global Routing

Experimental Results

Router

Two-dimensional routing followed by layer assignment Advantage: Fast routing Disadvantage: Loss of structural information and poor routing quality

3D router:

Two-pin net

CUGR: Combine pattern routing and layer assignmentAdvantage: Good routing qualityDisadvantage: Consider current best routing solutionrather than a predicted globally optimal routing one.

Model prediction

Using machine learning method, the model is used to predict the routing solution before global routing, and then the prediction results are used to guide global routing.

CUGR routing flow

The model predicts and guides in the initial routing stage

Introduction

Problem Formulation

Routability Prediction

Congestion-guided Global Routing

Experimental Results

Problem Definition

Model prediction and guided routing

Three main tasks:

- design an effective deep learning model as a congestion estimator;
- extract appropriate 3D features and labels for model training;
- develop an effective methodology for global routing guided by the congestion estimator.

Introduction

Problem Formulation

Routability Prediction

Congestion-guided Global Routing

Experimental Results

Feature Extraction

- > **Pin density:** The number of pins in a tile.
- > Net capacity: The number of wires that can be allocated within one tile (on one layer) for the nets.
- > Net density: Improved RUDY method in a 3D space.

- From design to tiles to routing grid;
- A tile is a pixel of a feature map.

3D RUDY Method

2D RUDY method:

$$R(n) = \frac{HPWL(n) \times p(n)}{w_n \times h_n}$$

(a) 2D bounding box

(b) 3D bounding box

Horizontal

Vertical

Vertical

Horizontal

Horizontal

Improved 3D RUDY method:

$$r_h(n) = \frac{w_n}{w_n + h_n} \times \frac{1}{y_h(n)}, r_v(n) = \frac{h_n}{w_n + h_n} \times \frac{1}{y_v(n)},$$
$$R^{3D}(n, i) = r_i(n) \times \frac{HPWL(n) \times p(n)}{w_n \times h_n},$$

- Determine the number of layers (depth) of b-box according to the relative positions of pins;
- Determine the net proportion allocated to each layer according to the length and width of the b-box.

3D RUDY Method

Determine the number of layers (depth) of b-box

Determine routing direction according to pin position

- The pin layers and all layers between them are covered in the net b-box.
- Up-and-down one layer expansion will be performed when the current b-box lacks layers with the desired routing direction.

Feature map

Figure 3: Gray images of features and labels in the first layer of *pci_bridge32_b_md3*.

Label:

- Wire-usage: The number of tracks in a wire edge occupied by routed nets.
- □ Via-usage: The number of vias in a wire edge after routing.
- Each feature or label of each layer of a design is represented by a gray image.

Feature map

Structure of the feature map:

- > A color represents a feature.
- > A multi-channel feature image with *m*n* channels.

U-Net Model

The core idea of the U-Net is the down-sampling, up-sampling, and skip connection schemes.

Multi-scale prediction and deep supervision can be performed in the model.

Model Training

2

3

- Labels: wire-usage and via-usage
- Benchmarks: ISPD15, ICCAD17, ICCAD19
- > Data pre-processing:
 - 1. Feature extraction
 - 2. Channel combination
 - 3. Sample incision

Algorithm 1 Model Training Pre-processing Require: Placed netlist. Ensure: Training set. 1: pin den, net capacity, net den, wire usage, via usage = Init_array(); 2: while net \leftarrow nets.read() do $net_den[net.position] = RUDY^{3D}(net);$ 3: while $pin \leftarrow net.getNextPin()$ do 4: pin_den[pin.position] + = 1;5: end while 6: 7: end while 8: 3DPatternRouting(); 9: Multi-level3DMazeRouting(); 10: net_capacity \leftarrow getCapacityMap(); 11: wire_usage \leftarrow getWireUsageMap(); 12: via_usage \leftarrow getViaUsageMap(); 13: Features: $X \leftarrow Combine(pin_den, net_capacity, net_den);$ 14: Labels: $Y \leftarrow Combine(wire_usage, via_usage);$ 15: $d = \{d_1, d_2\} \leftarrow$ The number of channels of feature and label maps; 16: Training set \leftarrow Incise $X, Y \in \mathbb{R}^{d \times w_n \times h_n}$ to $X_n, Y_n \in$ $R^{d \times 64 \times 64}$. 17: return Training set.

Model Training

Training set: Cut the design into n*64*64 samples (n is the number of layers). The sample number of the training set is:

ISPD15: 9311
ICCAD17: 4058
ICCAD19: 44010

Introduction

Problem Formulation

Routability Prediction

Congestion-guided Global Routing

Experimental Results

Congestion-guided Global Routing

Model prediction and guided routing

Some terminologies:

- Capacity: c(u, v), the maximum number of tracks that can route through the edge;
- Demand: d(u, v), the number of nets already routed through the edge or occupied by fixed macros.
- Utilization: t(u, v), the proportion of the capacity occupied by routed nets and fixed macros.

$$t(u,v) = \frac{d(u,v)}{c(u,v)}.$$

Congestion-guided Global Routing

> Develop a **congestion prediction constraint** to modify the congestion cost function of the initial routing.

$$g(u,v) = wl(u,v) \times t(u,v) \times c_o,$$
(5) Original congestion cost function

$$pu(u,v) = \frac{pw(u,v) + pv(u,v)}{c(u,v)},$$
(6) Predicted results of the model:
Wire-usage & via-usage

$$\hat{g}(u,v) = \begin{cases} g(u,v) \times \frac{pu(u,v)+1}{2}, & \text{if } t(u,v) < 1 - \epsilon, \\ \infty, & \text{if } t(u,v) \ge 1 - \epsilon, \end{cases}$$
(7) New congestion cost function

apply the guided routing method for the first 70% of nets, while the last 30% use CUGR's initial routing.

Purpose: We make front nets **avoid the original highly congested area** when routing, and the later nets are routed in the avoided area with no routed nets, which can reduce congestion effectively.

Introduction

Problem Formulation

Routability Prediction

Congestion-guided Global Routing

Experimental Results

Feature Selection

The PCC (Pearson correlation coefficient) was used to calculate the correlation between features.

Numbers	Features
0	pin-density
1	net-capacity
2	net-density
3	neighbor-pins
4	NCPR

Model Estimation Quality

- Benchmarks: ISPD15, ICCAD17, ICCAD19. They are divided into training benchmarks and testing benchmarks.
- Model training took about 7 hours, while the prediction time is less than two seconds on the GPU.

Ground congestion heatmaps vs. predicted congestion heatmaps.

Model Estimation Quality

Decisers	PCC dc-GAN [18] Ours		MANE		SDNE		Prediction time(s)		
Designs			dc-GAN [18] Ours		dc-GAN [18]	Ours	dc-GAN [18]	Ours	
mgc_des_perf_1	0.757	0.857	0.256	0.139	0.188	0.156	0.585	0.435	
mgc_des_perf_a	0.817	0.907	0.147	0.051	0.107	0.112	1.139	1.071	
mgc_fft_2	0.605	0.605 0.860 0.234		0.112	0.240	0.141	1.163	1.061	
mgc_fft_a	0.693	0.879	0.222	0.028	0.168	0.079	1.855	1.067	
mgc_matrix_mult_2	0.796	0.889	0.170	0.115	0.236	0.135	1.435	1.058	
mgc_matrix_mult_c	0.707	0.907	0.127	0.027	0.119	0.079	1.116	1.116	
mgc_pci_bridge32_a	0.708	0.819	0.121	0.119	0.191	0.164	1.240	1.073	
mgc_superblue16_a	0.693	0.828	0.133	0.095	0.193	0.173	1.560	1.071	
mgc_superblue19	0.703	0.795	0.100	0.062	0.217	0.184	1.525	1.080	
des_perf_1	0.690	0.828	0.105	0.182	0.295	0.222	1.104	1.043	
des_perf_b_md2	0.721	0.885	0.189	0.100	0.184	0.111	1.208	1.034	
edit_dist_1_md1	0.611	0.882	0.199	0.115	0.142	0.135	1.257	1.047	
fft 2 md2	0.639	0.806	0.164	0.135	0.205	0.145	1.106	1.037	
pci_bridge32_a_md1	0.723	0.899	0.150	0.067	0.150	0.092	1.822	1.024	
pci_bridge32_b_md3	0.638	0.916	0.153	0.024	0.079	0.054	1.844	1.045	
ispd18_test1	0.708	0.881	0.147	0.034	0.165	0.065	0.972	0.092	
ispd18_test6	0.649	0.733	0.204	0.060	0.157	0.091	1.938	1.638	
ispd18_test8	0.708	0.867	0.087	0.023	0.165	0.050	1.009	1.146	
ispd19_test7	0.665	0.793	0.198	0.033	0.137	0.068	1.715	1.185	
ispd19_test8	0.599	0.806	0.128	0.039	0.267	0.068	1.260	1.216	
ispd19_test9	0.756	0.828	0.095	0.042	0.170	0.068	1.305	1.265	
ispd18_test8_metal5	0.811	0.850	0.090	0.032	0.173	0.069	1.892	1.465	
ispd19_test7_metal5	0.711	0.799	0.069	0.043	0.120	0.081	1.783	1.632	
average	0.700	0.848	0.152	0.073	0.177	0.111	1.384	1.083	

 TABLE II: Congestion Estimation Quality Comparison.

Three metrics:

- PCC: Pearson correlation coefficient
- MANE: the mean absolute normalized error
- SDNE: the standard deviation in the normalized error

PCC ↑	MANE↓	SDNE↓
21.14%	51.97%	37.29%

Model Estimation Quality

TABLE III: Global Routing Quality Metrics (C: CUGR routing results; G: our guided routing results)

Benchmarks		Total Overflow		Wire Length			Via Count			Run time (s)			
		C	G	ratio (%)	C (E+07)	G (E+07)	ratio (%)	C (E+05)	G (E+05)	ratio (%)	C	G	ratio
1	mgc_des_perf_1	496	196	-60.48	0.1325	0.1305	-1.46	4.0288	3.9365	-2.29	60.677	67.113	1.11
	mgc_des_perf_a	6201	6123	-1.26	0.2113	0.2115	0.08	4.1542	4.1577	0.04	78.422	101.42	1.29
- [mgc_fft_2	80	39	-51.25	0.2480	0.2426	-2.17	1.4424	1.3584	-5.82	12.439	14.609	1.17
1	mgc_fft_a	1047	949	-9.36	0.4090	0.3944	-3.57	1.3596	1.2766	-6.11	18.592	27.948	1.50
	mgc_matrix_mult_2	3181	2506	-21.22	1.4000	1.3841	-1.84	5.6231	5.3898	-4.15	70.638	76.731	1.09
	<pre>mgc_matrix_mult_c</pre>	6973	6733	-3.44	0.3400	0.3398	-0.06	5.9752	5.9710	-0.07	135.42	171.50	1.27
I	mgc_pci_bridge32_a	1969	1909	-3.05	0.2890	0.2911	-0.72	1.0141	1.0065	-0.75	10.621	13.882	1.31
	mgc_superblue16_a	28575	28502	-0.26	29.990	29.975	-0.05	23.799	23.763	-0.15	645.56	597.16	0.93
	mgc_superblue19	12112	10780	-11.00	16.800	16.561	-1.43	18.600	15.984	-14.06	383.44	364.48	0.95
	des_perf_1	679	360	-46.98	0.1358	0.1339	-1.44	4.1540	3.9900	-3.95	70.236	72.482	1.03
	des_perf_b_md2	32	22	-31.25	0.1829	0.1830	0.00	4.4150	4.4154	0.01	37.444	44.273	1.18
	edit_dist_1_md1	6259	5298	-15.35	0.4173	0.4140	-0.78	6.8732	6.6331	-3.49	123.70	125.01	1.01
	fft_2_md2	11	0	-100	0.2723	0.2688	-1.27	1.5956	1.5325	-3.96	9.586	10.875	1.13
ł	pci_bridge32_a_md1	1650	1657	0.40	0.3210	0.3217	0.20	1.2026	1.2029	0.00	10.258	14.684	1.43
ł	pci_bridge32_b_md3	822	790	-3.89	0.0827	0.0828	0.16	1.3238	1.3243	0.04	14.994	24.286	1.62
	ispd18_test1	0	0	0	0.0418	0.0404	-3.37	0.2455	0.2627	7.02	2.915	4.188	1.44
	ispd18_test6	0	0	0	3.4448	3.4442	-0.02	12.634	12.584	-0.40	110.54	151.31	1.37
	ispd18_test8	0	0	0	63.648	63.648	0.00	21.171	21.111	-0.28	298.36	448.90	1.50
	ispd19_test7	0	0	0	11.768	11.767	-0.01	30.198	30.187	-0.04	697.10	813.46	1.17
	ispd19_test8	0	0	0	18.023	18.024	0.00	55.898	55.648	0.45	584.23	890.97	1.53
	ispd19_test9	0	0	0	27.146	27.145	0.00	93.271	92.838	-0.46	986.95	1420.63	1.44
i	spd18_test8_metal5	731	666	-8.89	0.6684	0.6682	-0.03	19.604	20.110	2.59	354.86	469.89	1.32
i	spd19_test7_metal5	582	544	-6.50	10.592	10.591	-0.06	54.552	54.049	-0.92	490.95	554.49	1.13
	average	3104	2916	-6.05	8.1114	8.0983	-0.02	16.223	16.032	-1.18	226.43	281.75	1.24

- Overflow, wire length and via count are all reduced;
- The 24% runtime overhead is due to the fact that guided routing involves more procedures of feature extraction, model loading, and model prediction.

Introduction

Problem Formulation

Routability Prediction

Congestion-guided Global Routing

Experimental Results

Conclusion

Innovations:

- Extract appropriate 3D features, develop an improved RUDY method;
- Identify features with low correlation to each other;
- > Develop an U-net based congestion estimator;
- > Incorporate our proposed congestion estimation to improve global routing.

Advantages:

- > Features with low correlation are **more representative**, which can **reduce the redundant information**.
- The PCC index between actual and predicted congestion is high at about 0.848 on average, significantly higher than the counterpart dc-GAN by 21.14%.
- Reduce the respective routing overflows, wirelength, and via count by averagely 6.05%, 0.02%, and 1.18%, with only 24% runtime overheads.

Thanks!