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Introduction

. VLSI design
- Complex design rules in advanced technology nodes

- Increasing size of chips

. Global routing
- Detailed routability

- Deterministic and fast parallelization




Introduction: global routing

. Partition routing space to GCells

. Grid graph

- Edge capacity: # available routing tracks

i




Previous work

. Detailed routability

FastRoute 4.0 [Xu+, ASPDAC’09], NCTU-GR 2.0[Liu+, TCAD’13], NTHU-Route[Chang+,
ICCAD’08], NTUgr[Chen+, ASPDAC’09]: route on the grid graph

- VFGR [Cai+, ASPDAC’14]: congestion model for layout components and capacity on node
- CUGR]Liu+, DAC’20] : 3D pattern routing, probabilistic resource model for detailed routability
Limitation: DRCs

. Parallelization on maze routing
NCTU-GR 2.0 [Liu+, TCAD’13]: collision-aware rip-up and reroute
- SPRoute [He+, ICCAD’19]: two-phase maze routing

Limitation: non-determinism



Contributions

. Detailed routability
- Soft capacity: reserve routing space based on congestion
- Congestion is estimated by pin density and net density (RUDY)
- Reduce 43% shorts and 14% DRCs

. Deterministic parallelization
- Bulk synchronous maze routing
- Scheduler to reduce load imbalance and livelock
- 7.4X faster than state-of-the-art
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Fig 1. Overall flow of SPRoute 2.0
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Soft capacity example

RUDY [Spindler+, DATE’07]:

o : r - Rectangular Uniform wire DensitY

RUDY = HPWL/Bounding box area

(a) ispd19_test7

(b) Pin Density (c) RUDY
., Lonitp » ’ . Take-aways:
- DRCs are related to pin density and wire
(d) Metal2 DRCs (e) Metal3 DRCs (f) Metald4 DRCs (g) Metal5 DRCs .
density (RUDY)
Fig 2. Heat map of pin density, RUDY and DRCs _ Low metal layers are more affected by

congestion

10



Soft capacity estimation

Congestion:
cong (x,y) = pin_density (x,y) + w * RUDY (x.,y)

[ ]
. Soft capacity:
soft_cap (x,y) = ratio (cong (z,y)) = hard_cap (x,y)
. 1.0
. Ratio:
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Edge cost function

Maze routing: shortest path problem on the grid graph

Edge weight

Usage/abr. unit

Fig 4. Three-stage Cost Function
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Deterministic parallel maze routing

. Routing regions of nets are highly overlapped

- Speedup of parallelization is limited

. Non-deterministic parallel maze routing
- NCTU-gr 2.0[Liu+, TCAD’13], SPRoute [He+, ICCAD’19]

- Threads route nets through the same region concurrently

. Bulk synchronous deterministic maze routing

- Does not require concurrent nets to be disjoint
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Bulk synchronous maze routing
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(a) Bulk synchronous execution and the scheduler

Scheduler partitions netlist into batches
All threads route nets from the same batch

Each thread acquires a net

Routes based on the global usage after the previous batch
Writes new usages into a batch-local buffer

Buffer usages are updated to global usage after the completion of a batch
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Performance Issues
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(a) Bulk synchronous execution and the scheduler

Load imbalance
Large and small nets in the same batch

Significant in the 1%t iteration of maze routing

Livelock

Nets are ripped up and rerouted repeatedly due to stale values

Factors: degree of overlap, same scheduling, batch size

time
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Scheduler

Algorithm 1: Parallelization scheduler

Input: overflowing netlist N, iteration number iter,
batch size s, total overflow fof
Output: vector of net batches B, batch size for next
iteration s

1 nbatch = [N.size/s]: 1. Filter out small nets in the 15t iteration

2 if iter =1 then :

3 if n.bbox > bbox_thold then :> (Ioad Imbalance)

4 foreach net n € N do

5 Bln.id % nbatch|.push(n) ) .

¢ else if fof > of_thold then mm=) 2. Sort the net by X or Y coordinate alternatively
e e T and schedule close nets to different batches

8 else 37)7"/:1);1/_0;'(f"rj'l—ou';e(—lge_Y(N) (liVGlOCk)

9 foreach net n € N do

10 Bn.sorted_rank % nbatch].push(n)

it_else Bln.id % nbatchl.push{n] | m==) 3. Reduce batch size, critical to the overflow

| 12 if s >= 2« nthreads then s = [s/2]

convergence
(livelock)



Experiment Setup

. SPRoute 2.0 implemented in C++
. Optimized for 8 thread

. Benchmarks: ICCAD’19 contest

. Metrics:

- Quality: Weighted score including wirelength, vias, non-preferred usages,
DRCs and shorts

- Runtime: 1 to 8 threads

. Baseline: CUGR [Liu+, DAC’20]
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Quality

Overall: 100.1%

Wirelength & Vias: 102%
Shorts: 57%

Ratio

1.2

1

0.8

0.8

04

QOverall

Non-preferred Usage: 102.1%

DRCs: 85%

WL & Vias

Non-preferred Usage

Short

DRCs

BMCUGR
HMSPRoute 2.0

19



Runtime

6.9X faster with 1 thread
7.4X faster with 8 threads

speedup

| HCUGR
B SPRoute 2.0

o =2 N W s, o0 N @

runtime (1t) runtime (8t)



Scalability

o
T

—&— NonDet (SPRoute 1.0)
o random
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Fig. Speedup of maze routing

Scheduler algorithm speedup
Random partition + batch reduction: 3.2X
+ Filter: 4.0X

+ Filter + sort: 4. 3X



Conclusions

. Detailed Routability
- Soft capacity: reserve routing space based on congestion

- Congestion is estimated by pin density and net density (RUDY)
- Reduce 43% shorts and 14% DRCs

. Deterministic Parallelization
- Bulk synchronous maze routing
- Scheduler to reduce load imbalance and livelock
- 7.4X faster than state-of-the-art
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Thank you!
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