
1

FPGA-Accelerated Maze Routing Kernel for

VLSI Designs

Xun Jiang1, Jiarui Wang2, Yibo Lin2, and Zhongfeng Wang1

1 ICAIS Lab, School of Electronic Science and Engineering, Nanjing University

2 CECA, CS Department, Peking University

ASP-DAC, Jan. 17-20, 2022, Virtual Conference

Outline

⚫Introduction

⚫Design Methodology

⚫Experiment

⚫Conclusion

2

Outline

⚫Introduction

⚫Design Methodology

⚫Experiment

⚫Conclusion

3

Detailed Routing

4

⚫Main Challenges

◆ Complicated design rules

◆ Large solution space (104 × 104 × 10 grid graph)

◆ More time-consuming with new technology

Solution of Dr.CU on ISPD18 test10 [1]

[1] Dr. CU: Detailed routing by sparse grid graph and minimum-area-captured path search, TCAD, 2019

Maze Routing Kernel

5

⚫ Searching Space:

◆ 2D/3D Grid Graph

⚫ Searching Process:

◆ Select vertex with minimal cost

◆ Expand frontier

◆ Check terminal vertex

◆ Reconstruct path

Image source: https://vlsi-soc.blogspot.com/2018/12/maze-router-lees-algorithm.html

FPGA Acceleration

6
Image source: https://www.xilinx.com/applications/data-center/high-performance-computing.html

Next is EDA?

Previous Works and Challenges

7

⚫Previous Works

◆ Detailed routing: TritonRoute[ICCAD’18], Dr. CU[TCAD’20], and et al

➢ Only leverage parallelization on CPU

◆ FPGA-accelerated FPGA routing: [Korolija et al, IPDPSW’19]

➢ 4-6x slower than Intel Core i5

⚫Challenges

◆ Data dependency in maze routing

◆ Different size of nets

◆ A large number of random memory access

Outline

⚫Introduction

⚫Design Methodology

⚫Experiment

⚫Conclusion

8

Multi-Pin Maze Routing

9

⚫ Goal: Connect all pins on the net with minimal cost

⚫ Input: A grid graph G(V, E) , N sets of vertices {Sn}

related to the set of pins {pn}

⚫ Output: Path P with minimum total cost

Path P = Set of Partial Searched Paths

S

T

T

T

0 0 0 0 0

1

1

12 1

2 1

3 2 2

1

1

2

1

1

2

1

1

2

2

2

2

0

1

1

1

1

0

2 1

1

1

0

0

0

0

0

0

1

2

1

1

1

1

1

0

2

1

2

2

2

2

2

2

2

1

0

3

1

2

4

4

4

4

4

3

2

1

5

2

3

3

3

3

3

3

2

1

4

1

2

5

5

5

5

5

4

3

2

6

3

4

6

6

6

6

6

5

4

3

7

4

5

7

7

7

7

7

6

5

4

8

5

6

8

8

7

6

5

6

7

67 5 4 3 2

7 6 5 0 0

7 6 5 4 3

7

6

7

0 0 0

78 6

7

Searched Path

Partial Searched Path

Searched Vertex

Unsearched Pin

Searching Frontier

Blockage

Cost Metrics:

1. Total wire length

2. Total via count

3. Non-preferred usage

4. Design rule violations

Hardware Optimization Methods

10
[2] https://github.com/cuhk-eda/dr-cu

Hardware Optimization Methods

⚫ Priority Queue Operation:

⚫ Computing Dominated Part:

⚫ Memory Access Dominated Part:

⚫ Complex Control Flow:

Baseline Software Dr.CU[2]

Push pin/vertex into PQ

 Pop vertex (minimal cost)

Compute new length / new
penalty / new cost

Compare & update
temporary cost

Store path & make path cost
zero

Push path and pin into PQ

Reach Pin

Pins Left

No Pins Left

Start

Access adjacent vertices

Not Reach Pin

⚫

◆ Pipelined hardware priority queue

◆ Prediction of priority queue

⚫

◆ Fast hardware circuit

⚫

◆ Compact graph data structure

◆ Temporary cost reuse on chip

⚫

◆ Predefined operation and schedule

Maze Routing Processing Element

11

PE PE PE PE PE PE PE PE

AXI Interconnect

DDR

Graph Dispatcher

PCIe XDMA

Multi-Core CPU
Pripority
Queue

Controller

Pin State
Table

Closed
Set

Controller
FSM

done

Executor

vertex

repop
pop valid

pin

Load Store Unit Parallel Compute Crossbar

LenCostUnit

LenCostUnit

PenCostUnit

PenCostUnit

LenCostUnit

LenCostUnit

Parallel Update

CMP Unit

CMP Unit

CMP Unit

CMP Unit

CMP Unit

CMP Unit

CMP Unit

done AXI-4

FIFO

Dispatch graph
data

CMP Unit

cost

vertex

pin

cost

opcpde

Predict
Reg

AXI FSM

START_OP

PREDICT_OP

COMMIT_OP

MAKE_ZERO_OP

REFRESH_OP

Push vertices on Start Pin

Search one new pin

Signal from Graph Dispatcher

Unsearched pins exist

All pins searched

Signal from Priority Queue

Inner Loop

Outer Loop

Signal from Controller FSM

⚫ Priority Queue : sort vertices by temporary cost in ascending order
⚫ Controller: schedule different operations of hardware shown in the right picture
⚫ Executor: compute the new length/penalty/cost of adjacent vertices and update the temporary cost

Operations and scheduleMaze Routing PE Structure

Tri-State Priority Queue

12

Base architecture: P-Heap [3]

[3] R. Bhagwan and B. Lin, “Fast and scalable priority queue architecture for high-speed network switches,” in Proceedings IEEE INFOCOM 2000

Time complexity: O(1)

FPGA LUT resource: O(log(n))

FPGA SRAM resource: O(n)

Only leverage internal parallelism
of Priority Queue

Analysis of prediction in timeline:

Priority Queue with Prediction:

Provide 7% performance increase on realistic FPGA environment

Also leverage external parallelism of Priority Queue

Predict Policy: Predict the new top vertex before the last popped
vertex’s adjacent vertices pushed into the Priority Queue.

PO

PR

CH

CH LOAD

EXEC PUSHNLwait

wait

PO CH LOAD EXEC PUSH

Vertex 0 Pop

Vertex 1 Predict

Vertex 0 Pop

IDLE PUSH POP PREDICT

Push Signal Push Finish Vertex Searched

Vertex Unsearched

Predict Finish

Predict

No Predict

Graph Data Structure

13

(1) Graph Data (2) Vertex Data

Graph Pin Table
Pin Vertex Table

Vertex Property Table
Chip Data Block

①

②

③

④

EdgeCost1
EdgeCost3
EdgeCost5

newLenAdd1
newLenAdd5

Vertex3
L1

EdgeCost0
EdgeCost2
EdgeCost4

newLenAdd0
newLenAdd4

Vertex2
L0

Vertex1 Vertex0
Vertex5 Vertex4L3 L2

Pin1 Pin0Pin3 Pin2Pin5 Pin4
L5 L4M uL

Adjacent List Data Structure

Contiguous graph data ➔ Better data transfer via PCIe interface
Compact vertex data ➔ Better memory access on DRAM

Batch Nets Parallelization

14

Functions of Graph Dispatcher:
1. Start Maze Routing PEs and monitor their state
2. Schedule batched graphs

Schedule Policy:
1. Fixed Priority
2. Start PE whenever PE is

idle until no workloads
reserved in DDR

Principle:
1. Make all PEs busy
2. PEs run in parallel

independentlyDDR

Graph
Dispatcher

PE

PE

PE

PE

AXI Bus

Control Signal to PE

PE Done Signal

AXI Memory Access

Graph Data in DDR

Vertex Data in PE

Batch Data in DDR

Outline

⚫Introduction

⚫Design Methodology

⚫Experiment

⚫Conclusion

15

Experiment Settings

16

⚫Experimental Platform (Amazon EC2 f1.2xlarge instance)

◆ 8-core Intel Xeon CPU E2-2686 v4 @2.30GHz, 122GB Memory

◆ Xilinx Ultrascale+ VU9P FPGA, 1 16GB DDR4 Interface

⚫Configurations

◆ CPU : 1/2/4/8 threads

◆ FPGA : 1/2/4/8/12 PEs, 125MHz frequency

⚫ Test sets

◆ ISPD 2018 contest benchmarks[3]

◆ Node number of net less than 216 (more than 90% of all nets for large batch)

[3] S. Mantik et al “ISPD 2018 initial detailed routing contest and benchmarks,” ISPD 2018

Routing Quality & Runtime

17

⚫ CPU with 8 threads (maximum performance), FPGA with 12 PEs
⚫ Runtime is the sum of the time of tested nets running in the first iteration
⚫ Quality degradation is less than 1%
⚫ The speed of each test is above 2x; the speedup of large tests is almost 3x

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Runtime (s)

Ours Dr.CU 2.0

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

x
1

0
5

Routing Quality Score

Ours Dr.CU 2.0

Speedup & Scalability

18

Speedup with batch size Speedup with PEs/Threads number

Batch nets are taken from ISPD2018 test 6

Speedup =
#𝐶𝑃𝑈 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(8 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

#𝐹𝑃𝐺𝐴 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(12 𝑃𝐸𝑠)
Speedup(FPGA) =

#𝐶𝑃𝑈 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(8 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

#𝐹𝑃𝐺𝐴 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑁 𝑃𝐸𝑠)

Speedup(CPU) =
#𝐶𝑃𝑈 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(8 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

#𝐶𝑃𝑈 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑁 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

S
p
ee

d
u
p

S
p
ee

d
u
p

batch size = 5923

Hardware Resource

19

⚫ URAM is the key to reuse more data on chip (#size of URAM = 8 * #size of BRAM)
⚫ LUTs and FFs is plenty compared with RAMs
⚫ Still has potential to increase the number of PEs

0

500

1000

1500

2000

LUTs(K) FFs(K) BRAM URAM

Top Design Resource Usage

Avail. Top(12)

0

10

20

30

40

50

60

LUTs(K) FFs(K) BRAM URAM

Module Resource Usage

PQ Ctrl Exe

Outline

⚫Introduction

⚫Design Methodology

⚫Experiment

⚫Conclusion

20

Conclusion

21

⚫ Conclusion:

◆ Provide a design methodology to accelerate maze routing on FPGA

◆ Design an efficient data structure, algorithm and hardware implementation

◆ Better scalability than multi-threads software

◆ Up to 3.1x speed-up

⚫ Future Work:

◆ Optimize the performance of routing on the CPU-FPGA system

◆ Process nets with larger size on FPGA

22

Thanks!

Questions are welcome

Email: jiangx@smail.nju.edu.cn

ICAIS Lab, Nanjing University, China

