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Detailed Routing

Solution of Dr.CU on ISPD18 test10 [1]
e Main Challenges

¢ Complicated design rules
¢ Large solution space (104 x 104 x 10 grid graph)

¢ More time-consuming with new technology

[1] Dr. CU: Detailed routing by sparse grid graph and minimum-area-captured path search, TCAD, 2019
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Maze Routing Kernel
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Image source: https://vlsi-soc.blogspot.com/2018/12/maze-router-lees-algorithm.html

e Searching Space:

¢ 2D/3D Grid Graph

e Searching Process:

& Select vertex with minimal cost
¢ Expand frontier
& Check terminal vertex

& Reconstruct path
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FPGA Acceleration

Genomics Machine Learning Molecular Dynamics Oil & Gas Weather & Climate

Next is EDA?

Image source: https://www.xilinx.com/applications/data-center/high-performance-computing.html
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Previous Works and Challenges

e Previous Works
¢ Detailed routing: TritonRoute[ICCAD’18], Dr. CU[TCAD’20], and et al
> Only leverage parallelization on CPU
¢ FPGA-accelerated FPGA routing: [Korolija et al, IPDPSW’19]

> 4-6x slower than Intel Core 15

e Challenges

¢ Data dependency in maze routing
¢ Different size of nets

¢ A large number of random memory access
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Multi-Pin Maze Routing

Cost Metrics:
1. Total wire length
Total via count

e Goal: Connect all pins on the net with minimal cost

e Input: Agrid graph G(V, E) , N sets of vertices {S,}
related to the set of pins {p,}

. . 3. Non-preferred usage
e Output: Path P with minimum total cost _p _ .g
4. Design rule violations
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Path P = Set of Partial Searched Paths
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Access adjacent vertices

Compute new length / new
penalty / new cost

Compare & update
temporary cost

Store path & make path cost
zero

Pins

Push path and pin into PQ

[2] https://github.com/cuhk-eda/dr-cu

Hardware Optimization Methods

® Priority Queue Operation:
4 Pipelined hardware priority queue
¢ Prediction of priority queue
® Computing Dominated Part:
¢ Fast hardware circuit
® Memory Access Dominated Part:
4 Compact graph data structure
4 Temporary cost reuse on chip
® Complex Control Flow:

& Predefined operation and schedule

10
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Maze Routing Processing Element

Maze Routing PE Structure Operations and schedule
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® Priority Queue : sort vertices by temporary cost in ascending order
® Controller: schedule different operations of hardware shown in the right picture

® Executor: compute the new length/penalty/cost of adjacent vertices and update the temporary cost
11
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o Tri-State Priority Queue
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operation value position 1 Level 1 Y !
Vertex Unsearched
Level 2 Predict Finish

Level 3

Predict Policy: Predict the new top vertex before the last popped

Level 4 vertex’s adjacent vertices pushed into the Priority Queue.
Time complexity: O(1) Analysis of prediction in timeline:
di Vertex 0 Pop [PO[CH| wait [NL]  EXEC PUSH
FPGA LUT resource: O(log(n)) Predict Vertex 1 Predict [PR] wait | CH] LOAD |
FPGA SRAM resource: O(n) No Predict vertexorop [Po]cH] LOAD | exec | PusH
Only leverage internal parallelism Also leverage external parallelism of Priority Queue

of Priority Queue Provide 7% performance increase on realistic FPGA environment

12
[3] R. Bhagwan and B. Lin, “Fast and scalable priority queue architecture for high-speed network switches,” in Proceedings IEEE INFOCOM 2000
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Graph Data Structure

(1) Graph Data (2) Vertex Data
EdgeCostl EdgeCostO
: EdgeCost3 EdgeCost2
(1) Graph Pin Table EdgeCost5 EdgeCost4
@  Pin Vertex Table newlenAddl newlLenAddO
: ‘ newlenAdd5 newlLenAdd4
) Chip Data BIOCka Vertex3 Vertex?2 Vertex1 VertexO
4) Vertex Property Table Ta Tl oo Tole ol Vertexs Vertexd
Pin5 | Pin4 | Pin3 | Pin2 | Pinl | PinO

Adjacent List Data Structure

Contiguous graph data =2 Better data transfer via PCle interface

Compact vertex data =>» Better memory access on DRAM
13



NANJITING
UNIVERSITY

Batch Nets Parallelization

Functions of Graph Dispatcher:

)
— i - ' 1. Start Maze Routing PEs and monitor their state
2. Schedule batched graphs
— . PE —
—
Graph Schedule Policy:
Dispatcher ) o
e PE — 1. Fixed Priority |
——s Control Signal to PE 2. Start PE whenever PE is
m—> - PE — —— PE Done Signal idle until no workloads
C— .
i ===p AXI Memory Access reserved in DDR
AXI Bus
Graph Data in DDR PfihCiplE'

4
B VertexDatain PE 1. Make all PEs busy
, 2. PEsrunin parallel
Batch Data in DDR ]
DDR independently 14
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Experiment Settings

e Experimental Platform (Amazon EC2 fl1.2xlarge instance)

¢ 8-core Intel Xeon CPU E2-2686 v4 @2.30GHz, 122GB Memory

& Xilinx Ultrascale+ VU9P FPGA, 1 16GB DDR4 Interface

e Configurations

& CPU : 1/2/4/8 threads

¢ FPGA: 1/2/4/8/12 PEs, 125MHz frequency

® [est sets

¢ ISPD 2018 contest benchmarks|3]

¢ Node number of net less than 2% (more than 90% of all nets for large batch)

6
[3] S. Mantik et al “ISPD 2018 initial detailed routing contest and benchmarks,” ISPD 2018 .
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Routing Quality & Runtime

) Routing Quality Score Runtime (s)
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CPU with 8 threads (maximum performance), FPGA with 12 PEs

Runtime is the sum of the time of tested nets running in the first iteration
Quality degradation is less than 1%

The speed of each test is above 2x; the speedup of large tests is almost 3x

17
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o7 Speedup & Scalability
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Speedup with batch size
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Batch nets are taken from ISPD2018 test 6

Speedup with PEs/Threads number
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Speedup(CPU) =

batch size = 5923 18
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Hardware Resource

Top Design Resource Usage Module Resource Usage
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® URAM is the key to reuse more data on chip (#size of URAM = 8 * #size of BRAM)
® LUTs and FFs is plenty compared with RAMs
e Still has potential to increase the number of PEs

19
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Conclusion

e Conclusion:
¢ Provide a design methodology to accelerate maze routing on FPGA
¢ Design an efficient data structure, algorithm and hardware implementation
¢ Better scalability than multi-threads software
¢ Up to 3.1x speed-up
e Future Work:
¢ Optimize the performance of routing on the CPU-FPGA system

& Process nets with larger size on FPGA

21
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Thanks!
Questions are welcome

Email: jlangx@smail.nju.edu.cn
ICAIS Lab, Nanjing University, China
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