

# Reliable Memristive Neural Network Accelerators Based on Early Denoising and Sparsity Induction Anlan Yu, Ning Lyu, Wujie Wen, Zhiyuan Yan

Speaker: Anlan Yu Electrical and Computer Engineering Department, Lehigh University, USA December 13, 2021

# Speaker Bio

#### Anlan Yu

I received BE degree in information science and engineering department, Southeast University, Nanjing, China in 2018. I'm currently pursuing PhD degree in Department of Electrical and Computer Engineering, Lehigh University, USA. My research interest is about increasing reliability of memristive DNN accelerator.



# Outline

## Introduction

## Proposed Reliable Crossbar Computing Schemes

- Crossbar output denoising scheme based on MMSE
- Bit inversion (BI) mapping scheme
- Sparsity induction (SI) scheme

## 3 Evaluation

- Experimental Settings
- Performance evaluation
- Overhead discussion

## Conclusion

#### TEHIGH UNIVERSITY.

# Introduction

🗄 LEHIGH UNIVERSITY.



#### **Implementing DNN on hardware**

- 1. Traditional MVM computing structure
  - Intensive MVM computation
  - Huge data movement
- 2. Processing-in-memory (PIM): memristive crossbar
  - No data movement
  - Computation in analog domain

# Memristive DNN accelerator suffers from non-ideal effects!<sup>1</sup>



<sup>1</sup>Faterne S Hosseini et al. "Tolerating Defects in Low-Power Neural Network Accelerators Via Retraining-Free Weight Approximation". In: ACM Transactions on Embedded Computing Systems (TECS) 20.5s (2021), pp. 1–21.

# Introduction

Types of errors for memristive crossbar

- 1. **Variations**: additive white Gaussian noise (AWGN) on the current output.
- 2. **Stuck-at-faults (SAFs)**: memristor cells are stuck at certain conductance levels and cannot be programmed.



# Introduction



Figure: Existing works<sup>234</sup> vs our work

<sup>&</sup>lt;sup>2</sup> Tao Liu et al. "A fault-tolerant neural network architecture". In: 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE. 2019, pp. 1–6.

<sup>&</sup>lt;sup>3</sup>Qiuwen Lou et al. "Embedding error correction into crossbars for reliable matrix vector multiplication using emerging devices". In: Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design. 2020, pp. 139–144.

<sup>&</sup>lt;sup>4</sup>Zhezhi He et al. "Noise injection adaption: End-to-end ReRAM crossbar non-ideal effect adaption for neural network mapping". In: Proceedings of the 56th Annual Design Automation Conference. 2019, pp. 1–6.

## Introduction

# Proposed Reliable Crossbar Computing Schemes Crossbar output denoising scheme based on MMSE

- Bit inversion (BI) mapping scheme
- Sparsity induction (SI) scheme

#### 3 Evaluation

- Experimental Settings
- Performance evaluation
- Overhead discussion

#### 4 Conclusion

## Proposed Reliable Crossbar Computing Schemes 1. Crossbar output denoising scheme based on MMSE

Linear MMSE estimation:

$$a_{opt}, \mathbf{b}_{opt} = \arg\min_{a,b} \mathbb{E}[(\mathbf{J}_{+} - a\mathbf{J}_{+,n} - \mathbf{b})^{2}], \tag{1}$$

MMSE based denoising:

$$\hat{\mathbf{J}}_{+} = a_{opt}\mathbf{J}_{+,n} + \mathbf{b}_{opt}, \qquad (2)$$

- Linear transformation of output current
- Low computational complexity multiplication and addition
- Parameters: statistical features, no online computation

## Introduction

Proposed Reliable Crossbar Computing Schemes
 Crossbar output denoising scheme based on MMSE
 Bit inversion (BI) mapping scheme

#### 3 Evaluation

- Experimental Settings
- Performance evaluation
- Overhead discussion

#### Conclusion

# Proposed Reliable Crossbar Computing Schemes

2. Bit inversion (BI) mapping scheme

 $e_1 \approx 5e_0$  in practice<sup>5</sup>  $\implies$  Intentionally increase percentage of 1s on the crossbar.

**Example**: a weight element is 1 and it's represented by two bits. Each cell is stuck at 0 and 1 with probability  $e_0$  and  $e_1$ .

**Traditional mapping scheme:** 



## BI mapping scheme:



Error probability:  $e_t \approx 3e_1 + e_0$  Error probability:  $e_b \approx e_1 + 3e_0$ As long as  $e_1 > e_0$ ,  $e_t - e_b = 2e_1 - 2e_0 > 0$ .

<sup>&</sup>lt;sup>5</sup>Lerong Chen et al. "Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar". In: *Design, Automation Test in Europe Conference Exhibition (DATE)*. 2017, pp. 19–24.

# Proposed Reliable Crossbar Computing Schemes

2. Bit inversion (BI) mapping scheme – theoretical analysis

Error probability difference between two schemes.



$$e_{diff} = e_t - e_b$$
(3)  
=  $2P_{(0,0),t}(e_1 - e_0)(1 - e_1 - e_0).$ 

- $e_1$ : ratio of SA1.
- $e_0$ : ratio of SA0.
- If  $e_1 > e_0$ ,  $e_{diff} >= 0$ .

## Introduction

#### Proposed Reliable Crossbar Computing Schemes

- Crossbar output denoising scheme based on MMSE
- Bit inversion (BI) mapping scheme
- Sparsity induction (SI) scheme

#### 3 Evaluation

- Experimental Settings
- Performance evaluation
- Overhead discussion

#### 4 Conclusion

# Proposed Reliable Crossbar Computing Schemes

3. Sparsity induction (SI) scheme

#### Sparsity induction (SI) scheme

- Use L1 regularization during training reduce error rate caused by SAFs.
- Remove MVM results of all zero internal nodes and feature maps

   eliminate error propagation.

## Introduction

#### Proposed Reliable Crossbar Computing Schemes

- Crossbar output denoising scheme based on MMSE
- Bit inversion (BI) mapping scheme
- Sparsity induction (SI) scheme

#### B Evaluation

- Experimental Settings
- Performance evaluation
- Overhead discussion

#### Conclusion

#### TEHIGH UNIVERSITY

# Evaluation

#### 1. Experimental Settings

- Crossbar size:  $128 \times 128$ .
- Quantization precision:  $N_w = 16$  bits and  $N_i = 8$  bits.
- $e_1 = 0.0904$  and  $e_0 = 0.0175^5$ .
- Variations modeled as AWGN with variance  $\sigma_n^2$ .

#### Table: Experimental Settings

| Network | Dataset | Accuracy | Configuration                                                              |
|---------|---------|----------|----------------------------------------------------------------------------|
| MLP     | MNIST   | 98.81%   | 784 - 256 - 256 - 256 - 10                                                 |
| Lenet 5 | MNIST   | 99.19%   | $28 \times 28 - 6c5 - 2s - 16c5 - 2s - 120 - 84 - 10$                      |
| Alexnet | CIFAR10 | 71.77%   | $32 \times 32 - 64c11 - 2s - 192c5 - 2s - 384c3 - 256c3 - 256c3 - 2s - 10$ |

<sup>&</sup>lt;sup>5</sup>Lerong Chen et al. "Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar". In: Design, Automation Test in Europe Conference Exhibition (DATE). 2017, pp. 19–24.

## Introduction

#### Proposed Reliable Crossbar Computing Schemes

- Crossbar output denoising scheme based on MMSE
- Bit inversion (BI) mapping scheme
- Sparsity induction (SI) scheme

## 3 Evaluation

- Experimental Settings
- Performance evaluation
- Overhead discussion

#### 4 Conclusion

#### TEHIGH UNIVERSITY

# Evaluation

2. Performance evaluation - accuracy vs noise level



Figure: Accuracy comparison with SAFs and variations. The proposed schemes improve the accuracy by 40% - 78%.

# Evaluation

2. Performance evaluation - accuracy vs ADC resolution



ELEHIGH UNIVERSITY

## Introduction

#### Proposed Reliable Crossbar Computing Schemes

- Crossbar output denoising scheme based on MMSE
- Bit inversion (BI) mapping scheme
- Sparsity induction (SI) scheme

#### 3 Evaluation

- Experimental Settings
- Performance evaluation
- Overhead discussion

## ④ Conclusion

# Evaluation

3. Overhead discussion

- ▶ BI: no additional hardware overhead
- SI: no additional hardware overhead
- MMSE: two extra multipliers and an adder
- Potential ways to reduce overhead:
  - 1. Applying MMSE to important layers only.
  - 2. Using power 2 to approximate parameters.

# Conclusion

- Proposed MMSE based output denoising scheme first redundancy-free intermediate layer denoising.
- Proposed BI mapping scheme.
- ▶ Proposed SI scheme.