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Introduction
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Implementing DNN on hardware
1. Traditional MVM computing

structure
– Intensive MVM computation
– Huge data movement

2. Processing-in-memory (PIM):
memristive crossbar

– No data movement
– Computation in analog domain

Memristive DNN accelerator suffers
from non-ideal effects!1

1Fateme S Hosseini et al. “Tolerating Defects in Low-Power Neural Network Accelerators Via Retraining-Free Weight Approximation”. In: ACM Transactions on
Embedded Computing Systems (TECS) 20.5s (2021), pp. 1–21.
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Introduction
Types of errors for memristive crossbar

1. Variations: additive white Gaussian noise (AWGN) on the current
output.

2. Stuck-at-faults (SAFs): memristor cells are stuck at certain
conductance levels and cannot be programmed.
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Introduction

1. Error correction output code (ECOC)

--- limited effectiveness due to error

propagation

2. Error correction codes on intermediate

layer:

--- high overhead

--- redundancy, e.g. rate 2/3, 1 redundant 

conductance every 2 conductances

Combat

variation

3. Retraining based on the

knowledge of defect map:

--- extra effort to get defect map

--- extra effort to retrain the network

Combat

SAFs

Existing works

1. MMSE based intermediate layer

denoising scheme:

--- redundancy-free

--- reduce error propagation

2. Bit inversion (BI) mapping scheme:

--- don’t need defect map

--- don’t need retraining

3. Sparsity Induction (SI)

scheme:

 --- augments BI

Proposed schemes

Figure: Existing works234 vs our work

2Tao Liu et al. “A fault-tolerant neural network architecture”. In: 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE. 2019, pp. 1–6.

3Qiuwen Lou et al. “Embedding error correction into crossbars for reliable matrix vector multiplication using emerging devices”. In: Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design. 2020, pp. 139–144.

4Zhezhi He et al. “Noise injection adaption: End-to-end ReRAM crossbar non-ideal effect adaption for neural network mapping”. In: Proceedings of the 56th Annual
Design Automation Conference. 2019, pp. 1–6.
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Proposed Reliable Crossbar Computing Schemes
1. Crossbar output denoising scheme based on MMSE

Linear MMSE estimation:

aopt ,bopt = argmin
a,b

E[(J+−aJ+,n −b)2], (1)

MMSE based denoising:

Ĵ+ = aoptJ+,n +bopt , (2)

▶ Linear transformation of output current
▶ Low computational complexity – multiplication and addition
▶ Parameters: statistical features, no online computation

8 / 21



Table of Contents

1 Introduction

2 Proposed Reliable Crossbar Computing Schemes
Crossbar output denoising scheme based on MMSE
Bit inversion (BI) mapping scheme
Sparsity induction (SI) scheme

3 Evaluation
Experimental Settings
Performance evaluation
Overhead discussion

4 Conclusion

9 / 21



Proposed Reliable Crossbar Computing Schemes
2. Bit inversion (BI) mapping scheme

e1 ≈ 5e0 in practice5 =⇒ Intentionally increase percentage of 1s on the
crossbar.
Example: a weight element is 1 and it’s represented by two bits. Each
cell is stuck at 0 and 1 with probability e0 and e1.

Traditional mapping scheme:

0 1

Positive

0 0

Negative

1 – 0 = 1

Error probability: et ≈ 3e1 + e0

BI mapping scheme:

1 1

Positive

1 0

Negative

3 – 2 = 1

Error probability: eb ≈ e1 +3e0
As long as e1 > e0, et − eb = 2e1 −2e0 > 0.

5Lerong Chen et al. “Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar”. In: Design, Automation Test in Europe
Conference Exhibition (DATE). 2017, pp. 19–24.
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Proposed Reliable Crossbar Computing Schemes
2. Bit inversion (BI) mapping scheme – theoretical analysis

Error probability difference between two schemes.

e1 = 0.0904, e0 = 0.0175.
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edi f f

= et − eb

= 2P(0,0),t(e1 − e0)(1− e1 − e0).

(3)

▶ e1: ratio of SA1.
▶ e0: ratio of SA0.

If e1 > e0, edi f f >= 0.
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Proposed Reliable Crossbar Computing Schemes
3. Sparsity induction (SI) scheme

Sparsity induction (SI) scheme
▶ Use L1 regularization during training – reduce error rate caused by

SAFs.
▶ Remove MVM results of all zero internal nodes and feature maps

– eliminate error propagation.
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Evaluation
1. Experimental Settings

▶ Crossbar size: 128×128.
▶ Quantization precision: Nw = 16 bits and Ni = 8 bits.
▶ e1 = 0.0904 and e0 = 0.01755.
▶ Variations modeled as AWGN with variance σ2

n .

Table: Experimental Settings

Network Dataset Accuracy Configuration
MLP MNIST 98.81% 784−256−256−256−10

Lenet 5 MNIST 99.19% 28×28−6c5−2s−16c5−2s−120−84−10
Alexnet CIFAR10 71.77% 32×32−64c11−2s−192c5−2s−384c3−256c3−256c3−2s−10

5Lerong Chen et al. “Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar”. In: Design, Automation Test in Europe
Conference Exhibition (DATE). 2017, pp. 19–24.
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Evaluation
2. Performance evaluation – accuracy vs noise level
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Figure: Accuracy comparison with SAFs and variations.
The proposed schemes improve the accuracy by 40%−78%.
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Evaluation
2. Performance evaluation – accuracy vs ADC resolution
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Figure: Accuracy comparison with different ADC resolutions.

MMSE makes it possible to use fewer ADC bits → lower
complexity.
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Evaluation
3. Overhead discussion

▶ BI: no additional hardware overhead
▶ SI: no additional hardware overhead
▶ MMSE: two extra multipliers and an adder

Potential ways to reduce overhead:
1. Applying MMSE to important layers only.
2. Using power 2 to approximate parameters.
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Conclusion

▶ Proposed MMSE based output denoising scheme – first
redundancy-free intermediate layer denoising.

▶ Proposed BI mapping scheme.
▶ Proposed SI scheme.
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