

Boosting ReRAM-based DNN by Row Activation Oversubscription

Mengyu Guo, Zihan Zhang, Jianfei Jiang, Qin Wang, and Naifeng Jing*

> Department of Micro/Nano Electronics, Shanghai Jiao Tong University

ASP-DAC 2022, Jan. 17-20

Outline

- Background
- Motivation
- Proposed methods
 - **RAOS and Prediction**
 - Adequate RAOS Rate
 - Architecture Design
- Experiment and Results

ReRAM-based DNN

A digital way

An analog way

• An effective approach to the memory wall

ReRAM-based DNN

- ADC's Huge overhead
 - High resolution

Component	Power (mW)	Area (mm ²)
ADC	16	0.0096
DAC	4	0.00017
Memristor	2.4	0.0002
IR	1.24	0.0021
OR	0.23	0.00077
Total	24.08	0.0131

[A. Shafiee et al. ISCA'16]

Useless calculations

[J. Albericio et al. MICRO'16]

• ADC designed for the worst case

• Test in ResNet50

• ADC designed for the worst case

• Test in ResNet50

• When ADC is going to be wasted

- Activate more rows
- Transfer more data

Row activation oversubscription(RAOS)

Our works

- Explore greater computational parallelism by data sparsity
 - Proposed RAOS to dynamically increase the computing parallelism
 - Proposed a Predicting Unit to find the upper bound of the results without hurting MVM accuracy
 - Proposed two Prediction Schemes to maximize the oversubscription rate for MVM calculation

RAOS and Prediction

• Row activation oversubscription

Adequate RAOS Rate — Binary Prediction

- Predicting Unit
 - Three predicting columns
 - Complementary columns
 - Work at the same time
- Pass
 - Compute in Crossbar
- Fail
 - Try to use lower RAOS rate
 - Compute in Crossbar
 - Compute the rest

Adequate RAOS Rate — Binary Prediction

- Predicting Unit
 - Three predicting columns
 - Complementary columns
 - Work at the same time
- Pass
 - Compute in Crossbar
- Fail
 - Try to use lower RAOS rate
 - Compute in Crossbar
 - Compute the rest

Adequate RAOS Rate – Sliding Prediction

- Predicting Unit
 - Two predicting columns
 - One rate for one column
 - Work at the same time
- Fail
 - Try to use lower RAOS rate
 - Compute in Crossbar
 - Make next predictions

Adequate RAOS Rate – Sliding Prediction

- Predicting Unit
 - Two predicting columns
 - One rate for one column
 - Work at the same time
- Fail
 - Try to use lower RAOS rate
 - Compute in Crossbar
 - Make next predictions

Adequate RAOS Rate – Sliding Prediction

- Predicting Unit
 - Two predicting columns
 - One rate for one column
 - Work at the same time
- Fail
 - Try to use lower RAOS rate
 - Compute in Crossbar
 - Make next predictions
- Boundary conditions
 - Padding

Overall Architecture Design

- RAOS mainly built upon a crossbar
 - Predicting columns
 - Predicting decoder
 - Row activation controller
- Hierarchical Architecture
 - Chips, Tiles, and IMA
 - Similar to ISAAC

Calc group0

Calc group1

Calc group2

Calc group3

Calc group4

Calc group5

Calc group6

Calc group7

Experimental setup

- Benchmarks
 - NN: ResNet50, InceptionV3, MobileNetV2, ShuffleNetV2, SqueezeNet
 - Dataset: ImageNet2012
 - We use the weight and feature map data without adding sparsity
- Simulation
 - Neuro-Sim
- Device Model
 - Crossbar size: 128x128
 - CACTI 6.5 RAM model@32nm
 - SAR-ADC @32nm
 - The same as ISAAC[1] and SRE[2]

ADC resolution designed for 16-row parallel computing

[1] A. Shafiee et al. ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. ISCA, 2016.[2] T. Yang et al. Sparse ReRAM Engine: Joint Exploration of Activation and Weight Sparsity in Compressed Neural Networks. ISCA, 2019.

Performance Evaluation

- Performance improvement using different RAOS rates
 - ×1 activates 16 rows without over-subscription

- Higher RAOS rate, higher performance
 - 1.97X(rate = 2), 5.1X(rate = 8) @ResNet50
- Sliding prediction is better!

Performance Evaluation

- Breakdown of the achieved rates using different prediction schemes
 - Network: ShuffleNetV2

• Sliding prediction results in higher RAOS rate

Performance Evaluation

- Performance comparison using sliding prediction
 - ×4 RAOS rate

- More performance
 - *vs* ISAAC[1]: 3.1x ~ 3.8x
 - *vs* SRE[2]: 23% ~ 31%

[1] A. Shafiee et al. ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. ISCA, 2016.[2] T. Yang et al. Sparse ReRAM Engine: Joint Exploration of Activation and Weight Sparsity in Compressed Neural Networks. ISCA, 2019.

- Energy consumption comparison
 - Network: ResNet50
 - Normalized to ISAAC

- Lower energy
 - vs ISAAC[1]: 4.9x
 - *vs* SRE[2]: **1.7x**

[1] A. Shafiee et al. ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. ISCA, 2016.[2] T. Yang et al. Sparse ReRAM Engine: Joint Exploration of Activation and Weight Sparsity in Compressed Neural Networks. ISCA, 2019.

Conclusion

- RAOS for greater computational parallelism by data sparsity
 - A method for predicting output results
 - A method for dynamically adjusting computing resources
 - A method for reducing waste of ADC

- Compared with the state-of-the-art works
 - Performance: 3.8X (ISAAC), 1.2X (SRE)
 - Energy: 4.9X (ISAAC), 1.7X (SRE)

Boosting ReRAM-based DNN by Row Activation Oversubscription

Mengyu Guo, Zihan Zhang, Jianfei Jiang, Qin Wang, and Naifeng Jing*

Thanks for your listening