CGRA Mapping Using Zero-Suppressed Binary Decision Diagrams

Rami Beidas and Jason Anderson
University of Toronto
27th Asia and South Pacific Design Automation Conference
January 20, 2022

CGRA: Coarse Grained Reconfigurable Architecture

- Array of programmable processing elements (PEs)
- PEs are word-level functional unit (think ALU)
- PEs are connected to nearest neighbours through word-level programmable switches arranged in a regular topology, like a mesh or torus
- Less silicon committed to
 programmability
- Lie between ASICs and FPGAs on the spectrum of power, performance, area, and flexibility

CGRA Mapping

- The key CAD step for implementing an application on a CGRA
- Inputs are application kernel compiled into a dataflow graph (DFG) and a device model graph
- Mapping assigns each DFG node to a device vertex and each DFG edge to a set of device arcs

The Challenge

- CGRA routing is highly restricted when compared to modern FPGAs
- This restriction limits the success of traditional CAD solution
- Difficult to decouple placement and routing
- Many heuristic solutions were proposed, including simulated annealing [1], genetic algorithms [2], and graph embedding [3] among others; many of which are architecture-specific
- Some have shown such heuristics can be ineffective for highly constrained problems and opted for optimal or near optimal solutions using ILP formulation and general optimization solvers [4][5]
- Unfortunately, such solutions with general solvers have not been shown to scale
[1] B. Mei, et al, "DRESC: a retargetable compiler for coarse-grained reconfigurable architectures," in Proc. FPT, 2002.
[2] T. Kojima, et al, "GenMap: A genetic algorithmic approach for optimizing spatial mapping of coarse-grained reconfigurable architectures," IEEE TVLSI, vol. 28, no. 11, 2020.
[3] L. Chen and T. Mitra, "Graph minor approach for application mapping on CGRAs," in Proc. FPT, 2012.
[4] S. Chin and J. Anderson, "An architecture-agnostic integer linear programming approach to CGRA mapping," in Proc. DAC, 2018.
[5] M. J. P. Walker and J. Anderson, "Generic connectivity-based CGRA mapping via integer linear programming," in IEEE FCCM, 2019.

Zero Suppressed Binary Decision Diagrams (ZDDs)

- A compact representation for solving problems in set theory [1]
- A ZDD represents a family of sets as a DAG, with internal nodes representing elements that appear in at least one set, and two terminal nodes \perp and T
- Every internal node has $\mathrm{HI} / \mathrm{LO}$ edges pointing to the residual subfamilies that do/do not contain the source element
- Paths from the root node to T represent the family
 members

$$
f=\{\{c\},\{a, c\},\{a, b\},\{a, b, c\}\}
$$

Zero Suppressed Binary Decision Diagrams (ZDDs)

- Set operations on ZDD are implemented using recursive procedures that utilize dynamic programming [1][2]
- Efficient implementations available for set union, intersection, difference, product, maximal, minimal, subset, superset, ... etc.
- Utilized in a variety of applications, including logic synthesis, graph optimization, and data mining among others
- Then... a hibernation!

Simple Path Enumeration and SIMPATH

- ZDD was proposed as an efficient representation for enumeration of simple (cycle free) paths in undirected graphs, along with fast algorithm for the ZDD construction called SIMPATH [1]
- For an 8×8 mesh, ~ 800 billion paths were
 represented using ~33K node ZDD
- The proposed solution reignited research in ZDD applications, especially in graph
 enumerations [2]

Intuition

- You might start to see how the path enumeration is related to our mapping problem
- A single DFG node mapping is simply a set of edges from where the node is mapped to where all the uses are mapped
- Each mapping solution is simply a set of used edges in the device annotated by owning DFG value

Problem Formulation

- The input
- Application kernel DFG with operation nodes N and dataflow edges $E \subseteq N \times N$
- Device model graph with vertices V representing PEs and $\operatorname{arcs} A \subseteq V \times V$ representing routing
- The set of opcodes

$$
\begin{aligned}
O & =\{I N, O U T, L D, S T R, A D D, S U B, \ldots\} \\
& O P: N \rightarrow O \\
& \text { ■ } O P S: V \rightarrow \boldsymbol{P}(O)
\end{aligned}
$$

- The output
- Mapping $N \rightarrow V$ and $E \rightarrow \boldsymbol{P}(A)$

Problem Encoding - Device Domains

We define three discrete domains of ZDD variables to represent device entities:

- W, which corresponds to the set of all device arcs or interconnects
- D, which corresponds to the set of all device vertices as path sources such that d_{v} implies a route from v
- S, which corresponds to the set of all device vertices as path sinks such that s_{v} implies a route to v

CGRA Path Enumeration

- We developed a simple path enumeration solution for directed graphs, constrained by hop count
- Given the nature of the problem, the solution is faster and simpler than SIMPATH
- Returns a table of ZDDs, one for each device vertex, summarizing all paths starting at that vertex

$$
V \mapsto \text { Set of Simple Paths (Zdd) }
$$

CGRA Path Enumeration

- For hop count h=2:

$$
\begin{aligned}
& S p Z d d[0]=\left\{\left\{d_{0}, w_{0}, s_{2}\right\},\left\{d_{0}, w_{0}, w_{2}, s_{3}\right\},\left\{d_{0}, w_{0}, w_{5}, s_{4}\right\}\right\}, \\
& \operatorname{SpZdd}[1]=\left\{\left\{d_{1}, w_{1}, s_{2}, w_{3}\right\},\left\{d_{1}, w_{1}, s_{3}\right\},\left\{d_{1}, w_{1}, w_{7}, s_{5}\right\}\right\}, \ldots \text { etc }
\end{aligned}
$$ the total number of paths is 28

- For $h=3$, the total number of paths is 46
- For $h=4$, the count increases to 58
- For $h=5$, it becomes 60
- No paths have more than 5 hops

Problem Encoding - DFG Domains

To represent DFG mappings, we define another set of ZDD variable domains:

- W^{\prime}, which corresponds to the set of all interconnects in the device, with one-to-one mapping to W
- D^{\prime}, which corresponds to the set of all possible mappings of DFG source nodes to device vertices such that $d_{v, n}^{\prime}$ implies a dataflow edge from node n mapped to vertex v
- S^{\prime}, which corresponds to the set of all possible mappings of DFG sink nodes to device vertices such that $s_{v, n}^{\prime}$ implies a dataflow edge to node n mapped to v

Single DFG Node Mapping Enumeration

- If we take a single DFG node in isolation and consider mapping it to a device vertex, we can enumerate all possible mappings of the dataflows to the fanout of that node
- In a nutshell, the fanout of a node n mapped to vertex v is the cartesian product of all possible routes to all possible placements of n 's fanouts,

```
Algorithm 2 Node Mapping Enumeration
```

Algorithm 2 Node Mapping Enumeration
function $\operatorname{EnumNodeMap}(n, v)$
function $\operatorname{EnumNodeMap}(n, v)$
$M=\{m \in N:\langle n, m\rangle \in E\}$
$M=\{m \in N:\langle n, m\rangle \in E\}$
if $|M|=0$ then
if $|M|=0$ then
$\operatorname{rZdd}=\left\{d_{v, n}^{\prime}\right\}$
$\operatorname{rZdd}=\left\{d_{v, n}^{\prime}\right\}$
else
else
rZdd $=T$
rZdd $=T$
for all $m \in M$ do
for all $m \in M$ do
$\operatorname{spZdd}=\operatorname{Ren}(\operatorname{SpZdd}[\mathbf{V}], \boldsymbol{D}, \boldsymbol{S})$
$\operatorname{spZdd}=\operatorname{Ren}(\operatorname{SpZdd}[\mathbf{V}], \boldsymbol{D}, \boldsymbol{S})$
rZdd $=$ CARTPROD $(r Z d d$, spZdd $)$
rZdd $=$ CARTPROD $(r Z d d$, spZdd $)$
rZdd $=\operatorname{LEGA}(\mathrm{rZdd}, \boldsymbol{M})$
rZdd $=\operatorname{LEGA}(\mathrm{rZdd}, \boldsymbol{M})$
11: return rZdd

```
11: return rZdd
```


Single DFG Node Mapping Enumeration

- Enumerating all possible mappings of $n=2$ to $v=2$, while restricting hop count to 2 , yields three possible mappings:

$$
\begin{aligned}
& \left\{\left\{w_{2}, d_{2,2}^{\prime}, w_{7}, s_{5,4}^{\prime}\right\},\right. \\
& \left\{w_{2}, d_{2,2}^{\prime}, s_{3,4}^{\prime}\right\}, \\
& \left.\left\{w_{5}, d_{2,2}^{\prime}, w_{8}, s_{5,4}^{\prime}\right\}\right\}
\end{aligned}
$$

DFG Mapping Enumeration

- Using single node mapping enumeration, we can enumerate the entire DFG mappings basically as a cartesian product of all DFG nodes' mappings
- Legalization steps drop solutions that overuse resources

```
Algorithm 3 Mapping Enumeration
```

Algorithm 3 Mapping Enumeration
: function $\operatorname{EnumMap}(V, A, N, E)$
: function $\operatorname{EnumMap}(V, A, N, E)$
mapsZdd $=\{\phi\} \quad \triangleright$ mappings of $[0, n-1]$
mapsZdd $=\{\phi\} \quad \triangleright$ mappings of $[0, n-1]$
3: for $n \in N$ do
3: for $n \in N$ do
4: \quad accZdd $=\phi$
4: \quad accZdd $=\phi$
for $v \in V$ do
for $v \in V$ do
6: \quad if $O P(n) \notin O P S(v)$ then continue
6: \quad if $O P(n) \notin O P S(v)$ then continue
7: $\quad n 2 v Z d d=\operatorname{EndmNodeMap}(n, v)$
7: $\quad n 2 v Z d d=\operatorname{EndmNodeMap}(n, v)$
8: \quad compMapsZdd $=\operatorname{LeGB}($ mapsZdd $, \boldsymbol{v}, n)$
8: \quad compMapsZdd $=\operatorname{LeGB}($ mapsZdd $, \boldsymbol{v}, n)$
9: updtMapZdd $=$ CartProd $($
9: updtMapZdd $=$ CartProd $($
n2vZdd, compMapsZdd
n2vZdd, compMapsZdd
)
)
updtMapZdd $=$ LEGC(updtMapZdd, $\boldsymbol{v}, \boldsymbol{n}$)
updtMapZdd $=$ LEGC(updtMapZdd, $\boldsymbol{v}, \boldsymbol{n}$)
updtMapZdd $=$ Ren(updtMapZdd, \boldsymbol{W})
updtMapZdd $=$ Ren(updtMapZdd, \boldsymbol{W})
accZdd $=$ Union $($ accZdd, updtMapZdd $)$
accZdd $=$ Union $($ accZdd, updtMapZdd $)$
mapsZdd $=$ accZdd
mapsZdd $=$ accZdd
14: return mapsZdd
14: return mapsZdd
5: \quad for $V \in V$ do

```
    5: \(\quad\) for \(V \in V\) do
```


DFG Mapping Enumeration

- With I/Os pinned to simplify the example, mapping enumeration returns three solutions:

$$
\begin{aligned}
& \left\{\left\{w_{0}^{\prime}, d_{0,0}^{\prime}, w_{1}^{\prime}, d_{1,3}^{\prime}, w_{2}^{\prime}, d_{2,2}^{\prime}, w_{7}^{\prime}, d_{3,4}^{\prime}, w_{11}^{\prime}, d_{7,5}^{\prime}\right\},\right. \\
& \left\{w_{0}^{\prime}, d_{0,0}^{\prime}, w_{1}^{\prime}, d_{1,3}^{\prime}, w_{5}^{\prime}, d_{2,2}^{\prime}, w_{7}^{\prime}, w_{8,}^{\prime}, w_{1}^{\prime}, d_{5,4}^{\prime} d_{7,5}^{\prime}\right\}, \\
& \left\{w_{0}^{\prime}, d_{0,0}^{\prime}, w_{1}^{\prime}, d_{1,3}^{\prime}, w_{5}^{\prime}, w_{7}^{\prime}, w_{8}^{\prime}, d_{4,2}^{\prime}, w_{11}^{\prime}, d_{5,4}^{\prime}, d_{7,5}^{\prime}\right\}
\end{aligned}
$$

- The ZDD representing all possible solutions is a DAG, choosing an optimal solution is as simple as assigning cost to ZDD variables and running linear time shortest path from root to T
- Minimizing routing yields the first mapping

Detailed DFG Mapping Enumeration

- Note that DFG nodes mapping to PEs is explicit, but the exact value to wire mapping is implicit; another run of the algorithm, but with wire domain $W^{\prime \prime}$ annotated with DFG nodes, such that $w^{\prime \prime}{ }_{a, n}$ implies arc a caries value produced by DFG node n
- Breaking the problem in two steps allows us to use $O(E)$ ZDD variables for interconnects domain in the larger problem instead of $O(E \times N)$

Runtime Control

- Even with a highly efficient data structure to represent all possible mappings, the number of solutions is still massive and the size of the enumeration ZDD still explodes for larger problems
- Most of the enumerated solutions are far from optimal
- Therefore, we relied on two techniques to keep runtime in check
- Pre-Placement
- Iterative Minimum
- Experimentally, these techniques have minimal impact on quality of results
- In most cases an optimal solution is found
- In fewer cases the solution is just few interconnects away from optimal (<5\%)

Pre-Placement

- The idea is to have an optional placement step using traditional solution such as simulated annealing to limit the enumeration space of valid solutions
- In case the placement result is too restrictive, we still allow a user defined tolerance to help the routing step

$a 1$	$a 0$	$a 1$	$a 2$	
$a 2$	$a 1$	$a 2$		
	$a 2$			
$c 2$				

Iterative Minimum

- Many of the enumerated partial mappings are far from optimal
- With iterative minimum, with each iteration we only keep minimum cost partial mappings
- The MIN function returns all minimum cost sets in a single pass
- Iteration count is user defined

```
Algorithm 4 Iterative Minimum
    function ITERMin(sZdd, MIC)
        rZdd = \perp
        for i\in[0,MIC - 1] do
            minZdd = Min(sZdd)
            rZdd = Union(rZdd, minZdd)
            sZdd = DIFF(sZdd, minZdd)
        return rZdd
```


Experimental Study

- The proposed solution was implemented in the CGRA-ME framework [1] utilizing the CUDD [2] and Extra [3] libraries
- We use LLVM compiled kernels from benchmarks distributed with CGRA-ME
- We target a single-context HyCube
- We compare our mapper with optimal and heuristic mappers of the current CGRA-ME release

Kernel Name	$\begin{aligned} & \hline \text { DFG } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { CGRA } \\ \text { Size } \end{gathered}$	$\begin{gathered} \text { ILP [4] } \\ \text { Runtime(s) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Heu [5] } \\ \text { Runtime(s) } \end{gathered}$	This Work Runtime(s)
accumulate	18	4 x 4	231.83	TO	0.23
cap	24	6x6	1881.81	65.27	0.39
conv2	16	4 x 4	11.82	11.86	0.18
conv3	24	6x6	132.72	63.94	0.31
mac2	24	6x6	TO	TO	0.29
matrixmult	17	4 x 4	7.56	25.78	0.18
mults2	25	6x6	2935.43	108.86	2.83
nomem1	6	4 x 4	4.27	4.11	0.10
simple2	12	6x6	43.25	93.78	0.32
simple	12	4 x 4	57.99	19.77	0.29
sum	7	4 x 4	2.36	11.48	0.11

- Two orders of magnitude speedup was obtained

Experimental Study

- Larger problems beyond the capability of previous solutions were also evaluated varying parameters of the runtime control techniques
- In general, increasing tolerance and iteration count increases the number of enumerated solutions, possibly from 0
- It is possible for a pre-placement to be infeasible to route; hence, the need for increasing tolerance
- Runtime can grow exponentially with higher iteration counts and, more severely, pre-placement tolerance; therefore, use must be with caution

Kernel Name	$\begin{gathered} \hline \text { CGRA } \\ \text { Size } \end{gathered}$	Tolerance	Min Iter Count	\#Sols	Runtime (s)
mac	6x6	0	1	12	0.28
		0	2	108	0.26
		0	3	532	0.34
		1	1	3624	0.73
		1	2	5563	0.81
		1	3	3068	0.77
		2	1	0	x
		2	2	1588	10.00
		2	3	14008	156.19
exp-4	4 x 4	0	1	0	x
		0	2	82	0.49
		1	1	0	x
		1	2	1844	0.68
cosh-4	8 x 8	0	≤ 3	0	x
		1	1	72	3.44
		1	2	585	5.40
		1	3	654	8.01
cap	6x6	0	≤ 3	0	x
		1	1	0	x
		1	2	4310	3.84
		1	3	13817	12.14
longchain	6 x 6	0	≤ 5	0	x
		1	4	0	x
		1	5	276	1.81
		1	6	1296	4.63
longchain	8 x 8	0	4	3714	0.58
		0	5	23804	0.61
		1	4	11606	2.63
		1	5	5070	7.08
		2	5	1484	82.28
		2	6	26388	612.48
FFT	16x16	0	≤ 2	0	x
		0	3	304	40.28
		0	4	15320	927.44
		1	≤ 3	TO	TO

Conclusion and Future Work

- We presented a ZDD-based CGRA mapper and illustrated its speed advantage when compared to state-of-the-art exact and heuristic solvers
- The immediate next step would be to support
- multi-context CGRA architectures
- multi-output operations
- predicated execution
- We believe our solution is flexible enough to support these features systematically without sacrificing speed or quality of results
- The next major development would utilize the enumeration feature of our solution to guide the design of domain-specific CGRA architectures

Thank You for Listening, Questions?

of Electrical \& Computer Engineering
UNIVERSITY OF TORONTO

