
CGRA Mapping Using Zero-Suppressed
Binary Decision Diagrams

Rami Beidas and Jason Anderson
University of Toronto

27th Asia and South Pacific Design Automation Conference

January 20, 2022

1

CGRA: Coarse Grained Reconfigurable Architecture

● Array of programmable processing
elements (PEs)

● PEs are word-level functional unit
(think ALU)

● PEs are connected to nearest
neighbours through word-level
programmable switches arranged
in a regular topology, like a mesh
or torus

● Less silicon committed to
programmability

● Lie between ASICs and FPGAs on
the spectrum of power,
performance, area, and flexibility

2

CGRA Mapping

● The key CAD step for implementing an application on a CGRA
● Inputs are application kernel compiled into a dataflow graph (DFG) and a device

model graph
● Mapping assigns each DFG node to a device vertex and each DFG edge to a set of

device arcs

3

The Challenge

● CGRA routing is highly restricted when compared to modern FPGAs
● This restriction limits the success of traditional CAD solution
● Difficult to decouple placement and routing
● Many heuristic solutions were proposed, including simulated annealing [1], genetic

algorithms [2], and graph embedding [3] among others; many of which are
architecture-specific

● Some have shown such heuristics can be ineffective for highly constrained
problems and opted for optimal or near optimal solutions using ILP formulation
and general optimization solvers [4][5]

● Unfortunately, such solutions with general solvers have not been shown to scale

4

[1] B. Mei, et al, "DRESC: a retargetable compiler for coarse-grained reconfigurable architectures," in Proc. FPT, 2002.
[2] T. Kojima, et al, "GenMap: A genetic algorithmic approach for optimizing spatial mapping of coarse-grained reconfigurable architectures," IEEE TVLSI, vol. 28, no. 11, 2020.
[3] L. Chen and T. Mitra, "Graph minor approach for application mapping on CGRAs," in Proc. FPT, 2012.
[4] S. Chin and J. Anderson, "An architecture-agnostic integer linear programming approach to CGRA mapping," in Proc. DAC, 2018.
[5] M. J. P. Walker and J. Anderson, "Generic connectivity-based CGRA mapping via integer linear programming," in IEEE FCCM, 2019.

Zero Suppressed Binary Decision Diagrams (ZDDs)

● A compact representation for solving problems in
set theory [1]

● A ZDD represents a family of sets as a DAG, with
internal nodes representing elements that appear
in at least one set, and two terminal nodes ⊥ and
T

● Every internal node has HI/LO edges pointing to
the residual subfamilies that do/do not contain the
source element

● Paths from the root node to T represent the family
members

5

[1] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,” in IEEE/ACM DAC, 1993

Zero Suppressed Binary Decision Diagrams (ZDDs)

● Set operations on ZDD are implemented using recursive procedures
that utilize dynamic programming [1][2]

● Efficient implementations available for set union, intersection,
difference, product, maximal, minimal, subset, superset, … etc.

● Utilized in a variety of applications, including logic synthesis, graph
optimization, and data mining among others

● Then… a hibernation!

6

[1] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,” in IEEE/ACM DAC, 1993
[2] A. Mishchenko, “An Introduction to Zero-Suppressed Binary Decision Diagrams,” Portland SU, Tech. Rep., 2001.

Simple Path Enumeration and SIMPATH

7

● ZDD was proposed as an efficient
representation for enumeration of simple
(cycle free) paths in undirected graphs, along
with fast algorithm for the ZDD construction
called SIMPATH [1]

● For an 8x8 mesh, ~800 billion paths were
represented using ~33K node ZDD

● The proposed solution reignited research in
ZDD applications, especially in graph
enumerations [2]

[1] D. E. Knuth, "The Art of Computer Programming", Addison-Wesley, 2011, vol. 4A: Combinatorial Algorithms
[2] H. Iwashita, et al, "ZDD-Based Computation of the Number of Paths in a Graph", TCS-TR-A-12-60, September 18, 2012

Intuition

● You might start to see how the
path enumeration is related to
our mapping problem

● A single DFG node mapping is
simply a set of edges from
where the node is mapped to
where all the uses are mapped

● Each mapping solution is simply
a set of used edges in the device
annotated by owning DFG value

8

Problem Formulation

● The input
○ Application kernel DFG with operation

nodes N and dataflow edges E.⊆.N.× .N

○ Device model graph with vertices V
representing PEs and arcs A.⊆.V.× .V

representing routing
○ The set of opcodes

O.=.{IN,.OUT,.LD,.STR,.ADD,.SUB, …}
■ OP: N → O

■ OPS: V → 𝐏(O)

● The output
○ Mapping N → V and E → 𝐏(A)

9

Problem Encoding - Device Domains

We define three discrete domains of ZDD variables to represent device entities:

● W, which corresponds to the set of all device arcs or interconnects
● D, which corresponds to the set of all device vertices as path sources such that dv

implies a route from v

● S, which corresponds to the set of all device vertices as path sinks such that sv

implies a route to v

10

CGRA Path Enumeration

● We developed a simple path enumeration
solution for directed graphs, constrained by
hop count

● Given the nature of the problem, the solution
is faster and simpler than SIMPATH

● Returns a table of ZDDs, one for each device
vertex, summarizing all paths starting at that
vertex

V ↦ Set of Simple Paths (Zdd)

11

CGRA Path Enumeration

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

12

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

Problem Encoding - DFG Domains

To represent DFG mappings, we define another set of ZDD variable domains:

● W', which corresponds to the set of all interconnects in the device, with one-to-one
mapping to W

● D', which corresponds to the set of all possible mappings of DFG source nodes to
device vertices such that d'v,n implies a dataflow edge from node n mapped to
vertex v

● S', which corresponds to the set of all possible mappings of DFG sink nodes to
device vertices such that s'v,n implies a dataflow edge to node n mapped to v

13

Single DFG Node Mapping Enumeration

● If we take a single DFG node in
isolation and consider mapping it to a
device vertex, we can enumerate all
possible mappings of the dataflows to
the fanout of that node

● In a nutshell, the fanout of a node n
mapped to vertex v is the cartesian
product of all possible routes to all
possible placements of n’s fanouts,
performed in the DFG domains

14

Single DFG Node Mapping Enumeration

● Enumerating all possible mappings of
n.=.2 to v.=.2, while restricting hop
count to 2, yields three possible
mappings:

{{w2, d'2,2, w7, s'5,4},

{w2, d'2,2, s'3,4},

{w5, d'2,2, w8, s'5,4}}

15

● Enumerating all possible mappings of
n.=.2 to v.=.2, while restricting hop
count to 2, yields three possible
mappings:

{{w2, d'2,2, w7, s'5,4},

{w2, d'2,2, s'3,4},

{w5, d'2,2, w8, s'5,4}}

● Enumerating all possible mappings of
n.=.2 to v.=.2, while restricting hop
count to 2, yields three possible
mappings:

{{w2, d'2,2, w7, s'5,4},

{w2, d'2,2, s'3,4},

{w5, d'2,2, w8, s'5,4}}

● Enumerating all possible mappings of
n.=.2 to v.=.2, while restricting hop
count to 2, yields three possible
mappings:

{{w2, d'2,2, w7, s'5,4},

{w2, d'2,2, s'3,4},

{w5, d'2,2, w8, s'5,4}}

DFG Mapping Enumeration

● Using single node mapping
enumeration, we can enumerate the
entire DFG mappings basically as a
cartesian product of all DFG nodes’
mappings

● Legalization steps drop solutions that
overuse resources

16

DFG Mapping Enumeration

● With I/Os pinned to simplify the example, mapping
enumeration returns three solutions:

{{w'0, d'0,0, w'1, d'1,3, w'2, d'2,2, w'7, d'3,4, w'11, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, d'2,2, w'7, w'8, w'11, d'5,4, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, w'7, w'8, d'4,2, w'11, d'5,4, d'7,5}}

● The ZDD representing all possible solutions is a DAG,
choosing an optimal solution is as simple as assigning cost
to ZDD variables and running linear time shortest path from
root to T

● Minimizing routing yields the first mapping

17

● With I/Os pinned to simplify the example, mapping
enumeration returns three solutions:

{{w'0, d'0,0, w'1, d'1,3, w'2, d'2,2, w'7, d'3,4, w'11, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, d'2,2, w'7, w'8, w'11, d'5,4, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, w'7, w'8, d'4,2, w'11, d'5,4, d'7,5}}

● The ZDD representing all possible solutions is a DAG,
choosing an optimal solution is as simple as assigning cost
to ZDD variables and running linear time shortest path from
root to T

● Minimizing routing yields the first mapping

● With I/Os pinned to simplify the example, mapping
enumeration returns three solutions:

{{w'0, d'0,0, w'1, d'1,3, w'2, d'2,2, w'7, d'3,4, w'11, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, d'2,2, w'7, w'8, w'11, d'5,4, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, w'7, w'8, d'4,2, w'11, d'5,4, d'7,5}}

● The ZDD representing all possible solutions is a DAG,
choosing an optimal solution is as simple as assigning cost
to ZDD variables and running linear time shortest path from
root to T

● Minimizing routing yields the first mapping

● With I/Os pinned to simplify the example, mapping
enumeration returns three solutions:

{{w'0, d'0,0, w'1, d'1,3, w'2, d'2,2, w'7, d'3,4, w'11, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, d'2,2, w'7, w'8, w'11, d'5,4, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, w'7, w'8, d'4,2, w'11, d'5,4, d'7,5}}

● The ZDD representing all possible solutions is a DAG,
choosing an optimal solution is as simple as assigning cost
to ZDD variables and running linear time shortest path from
root to T

● Minimizing routing yields the first mapping

● With I/Os pinned to simplify the example, mapping
enumeration returns three solutions:

{{w'0, d'0,0, w'1, d'1,3, w'2, d'2,2, w'7, d'3,4, w'11, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, d'2,2, w'7, w'8, w'11, d'5,4, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, w'7, w'8, d'4,2, w'11, d'5,4, d'7,5}}

● The ZDD representing all possible solutions is a DAG,
choosing an optimal solution is as simple as assigning cost
to ZDD variables and running linear time shortest path from
root to T

● Minimizing routing yields the first mapping

Detailed DFG Mapping Enumeration

18

● Note that DFG nodes mapping to PEs is explicit,
but the exact value to wire mapping is implicit;
another run of the algorithm, but with wire
domain W'' annotated with DFG nodes, such that
w''a,n implies arc a caries value produced by DFG
node n

● Breaking the problem in two steps allows us to
use O(E) ZDD variables for interconnects domain
in the larger problem instead of O(E×N)

Runtime Control

● Even with a highly efficient data structure to represent all possible mappings, the
number of solutions is still massive and the size of the enumeration ZDD still
explodes for larger problems

● Most of the enumerated solutions are far from optimal
● Therefore, we relied on two techniques to keep runtime in check

○ Pre-Placement
○ Iterative Minimum

● Experimentally, these techniques have minimal impact on quality of results
○ In most cases an optimal solution is found
○ In fewer cases the solution is just few interconnects away from optimal (<5%)

19

Pre-Placement

● The idea is to have an optional
placement step using traditional
solution such as simulated annealing
to limit the enumeration space of valid
solutions

● In case the placement result is too
restrictive, we still allow a user defined
tolerance to help the routing step

20

Iterative Minimum

● Many of the enumerated partial
mappings are far from optimal

● With iterative minimum, with each
iteration we only keep minimum cost
partial mappings

● The MIN function returns all
minimum cost sets in a single pass

● Iteration count is user defined

21

Experimental Study

● The proposed solution was implemented
in the CGRA-ME framework [1] utilizing
the CUDD [2] and Extra [3] libraries

● We use LLVM compiled kernels from
benchmarks distributed with CGRA-ME

● We target a single-context HyCube
● We compare our mapper with optimal

and heuristic mappers of the current
CGRA-ME release

● Two orders of magnitude speedup was
obtained

22

[1] J. Anderson et al, “CGRA-ME: An Open-Source Framework for CGRA Architecture and CAD Research”, ASAP 2021
[2] F. Somenzi, "CUDD package", Jan 2016. [Online]. Available: https://github.com/ivmai/cudd
[3] A. Mishchenko, “An Introduction to Zero-Suppressed Binary Decision Diagrams,” Portland SU, Tech. Rep., June 2001
[4] S. Chin and J. Anderson, "An architecture-agnostic integer linear programming approach to CGRA mapping," in Proc. DAC, 2018.
[5] M. J. P. Walker and J. Anderson, "Generic connectivity-based CGRA mapping via integer linear programming," in IEEE FCCM, 2019.

Experimental Study

● Larger problems beyond the capability of previous
solutions were also evaluated varying parameters
of the runtime control techniques

● In general, increasing tolerance and iteration count
increases the number of enumerated solutions,
possibly from 0

● It is possible for a pre-placement to be infeasible to
route; hence, the need for increasing tolerance

● Runtime can grow exponentially with higher
iteration counts and, more severely, pre-placement
tolerance; therefore, use must be with caution

23

Conclusion and Future Work

● We presented a ZDD-based CGRA mapper and illustrated its speed advantage
when compared to state-of-the-art exact and heuristic solvers

● The immediate next step would be to support
○ multi-context CGRA architectures
○ multi-output operations
○ predicated execution

● We believe our solution is flexible enough to support these features systematically
without sacrificing speed or quality of results

● The next major development would utilize the enumeration feature of our solution
to guide the design of domain-specific CGRA architectures

24

Thank You for Listening, Questions?

25

	CGRA Mapping Using Zero-Suppressed Binary Decision Diagrams
	CGRA: Coarse Grained Reconfigurable Architecture
	CGRA Mapping
	The Challenge
	Zero Suppressed Binary Decision Diagrams (ZDDs)
	Zero Suppressed Binary Decision Diagrams (ZDDs)
	Simple Path Enumeration and SIMPATH
	Intuition
	Problem Formulation
	Problem Encoding - Device Domains
	CGRA Path Enumeration
	CGRA Path Enumeration
	Problem Encoding - DFG Domains
	Single DFG Node Mapping Enumeration
	Single DFG Node Mapping Enumeration
	DFG Mapping Enumeration
	DFG Mapping Enumeration
	Detailed DFG Mapping Enumeration
	Runtime Control
	Pre-Placement
	Iterative Minimum
	Experimental Study
	Experimental Study
	Conclusion and Future Work
	Thank You for Listening, Questions?

