CGRA Mapping Using Zero-Suppressed
Binary Decision Diagrams

Rami Beidas and Jason Anderson

University of Toronto

27th Asia and South Pacific Design Automation Conference

January 20, 2022
#% The Edward S. Rogers Sr. Department

o g , . . .
% | of Electrical & Computer Engineering

X)) UNIVERSITY OF TORONTO

CGRA: Coarse Grained Reconfigurable Architecture

o Array of programmable processing

» » ——’-—-> :

elements (PEs) 1 1
o PEs are word-level functional unit , At sl 1

(think ALU) A AT A '-._
o PEs are connected to nearest ' 1} 1} 1} A e

neighbours through word-level @ P)) M R

programmable switches arranged 1

in a regular topology, like a mesh — N —— \ %ﬂ

or torus E%
o Less silicon committed to v

programmability
o Lie between ASICs and FPGAs on
the spectrum of power,
performance, area, and flexibility @ The Edward S. Rogers Sr. Department

§_§,§' of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

T
CGRA Mapping

« The key CAD step for implementing an application on a CGRA

« Inputs are application kernel compiled into a dataflow graph (DFG) and a device
model graph

« Mapping assigns each DFG node to a device vertex and each DFG edge to a set of

device arcs _ _
('31) | | (0,0)) (1.3)
\ 0 é |

1 0.0 13

v h
3 —
foo () { "/X 5 IN 2 "\—“22“)
22 34
a=_..; \2/ @) : (@2) (3.4)
B st | L L
c=5%*a+b; -l 6 1 7.4
- B L N g
T ' 4 Route
}) @ 9 @
10 11 1.4

0" O‘l—JTI l"v-‘—r ‘1

&k T}.léiEdward S. Rogers Sr. Department

’%" of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

00000000
The Challenge

o CGRA routing is highly restricted when compared to modern FPGAs

« This restriction limits the success of traditional CAD solution

» Difficult to decouple placement and routing

« Many heuristic solutions were proposed, including simulated annealing [1], genetic
algorithms [2], and graph embedding [3] among others; many of which are
architecture-specific

« Some have shown such heuristics can be ineffective for highly constrained
problems and opted for optimal or near optimal solutions using ILP formulation
and general optimization solvers [4][5]

« Unfortunately, such solutions with general solvers have not been shown to scale

[1] B. Mei, et al, "DRESC: a retargetable compiler for coarse-grained reconfigurable architectures," in Proc. FPT, 2002.
[2] T. Kojima, et al, "GenMap: A genetic algorithmic approach for optimizing spatial mapping of coarse-grained reconfigurable architectures," IEEE TVLSI, vol. 28, no. 11, 2020.
[3] L. Chen and T. Mitra, "Graph minor approach for application mapping on CGRAs," in Proc. FPT, 2012.

[4] S. Chin and J. Anderson, "An architecture-agnostic integer linear programming approach to CGRA mapping," in Proc. DAC, 2018.

[5] M. J. P. Walker and J. Anderson, "Generic connectivity-based CGRA mapping via integer linear programming," in IEEE FCCM, 2019. %@ The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

XJ) UNIVERSITY OF TORONTO

Zero Suppressed Binary Decision Diagrams (ZDDs)

« A compact representation for solving problems in (
set theory [1] |

o« A ZDD represents a family of sets as a DAG, with ! \
internal nodes representing elements that appear .|
in at least one set, and two terminal nodes _L and i R

« Every internal node has HI/LO edges pointing to 59 (20
the residual subfamilies that do/do not contain the \ ‘/
source element ¥ e

o Paths from the root node to T represent the family e | 1
members

f={{c}.{a,c}.{a,b}.{a,b,c}}

&% The Edward S. Rogers Sr. Department
aww

@ | of Electrical & Computer Engineering

XJ) UNIVERSITY OF TORONTO

[1] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,” in IEEE/ACM DAC, 1993

Zero Suppressed Binary Decision Diagrams (ZDDs)

e Set operations on ZDD are implemented using recursive procedures
that utilize dynamic programming [1][2]

e Efficient implementations available for set union, intersection,
difference, product, maximal, minimal, subset, superset, ... etc.

e Utilized in a variety of applications, including logic synthesis, graph
optimization, and data mining among others

e Then... a hibernation!

&% The Edward S. Rogers Sr. Department

’%" of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

[1] S. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,” in IEEE/ACM DAC, 1993
[2] A. Mishchenko, “An Introduction to Zero-Suppressed Binary Decision Diagrams,” Portland SU, Tech. Rep., 2001.

Simple Path Enumeration and SIMPATH

« ZDD was proposed as an efficient
representation for enumeration of simple
(cycle free) paths in undirected graphs, along
with fast algorithm for the ZDD construction ’_a__.' S ‘
called SIMPATH [1] : g f
« For an 8x8 mesh, ~800 billion paths were ®-00
represented using “33K node ZDD
« The proposed solution reignited research in
ZDD applications, especially in graph
enumerations [2]

[1] D. E. Knuth, "The Art of Computer Programming", Addison-Wesley, 2011, vol. 4A: Combinatorial Algorithms % The Edw.ard = I%Ogers ot Depflrtm.em
@ | of Electrical & Computer Engineering

[2] H. lwashita, et al, "ZDD-Based Computation of the Number of Paths in a Graph", TCS-TR-A-12-60, September 18, 2012
N2 UNIVERSITY OF TORONTO

Intuition

o You might start to see how the
path enumeration is related to
our mapping problem

o Asingle DFG node mapping is
simply a set of edges from
where the node is mapped to
where all the uses are mapped

o Each mapping solution is simply
a set of used edges in the device
annotated by owning DFG value

(o - —
. \.

et » i
A - 1.2 S e —
1.1 1.2
" a 1 3 2.1 sz—’ {
AC-1.2- 1~1’T A€ A
1.2 5
- D 1
. i
X---4.2- >b1v » X » v
A A€ A€ A
2.1
g
< ‘< <

&% The Edward S. Rogers Sr. Department

§_§,§' of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

Problem Formulation

o The input
o Application kernel DFG with operation
nodes N and dataflow edges E €N x N
o Device model graph with vertices V
representing PEs and arcs A €V x V
representing routing
o The set of opcodes
O ={IN, OUT, LD, STR, ADD, SUB, ...}
m OP:N—> O
m OPS: V— PO)
o The output
o Mapping N — Vand E — PA)

I“‘ . IN .‘i

[5\‘\, IN
\(2) J (3)

(4)

(60
\(5) /

CROROSC
@G E-@

‘%@ The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

XJ UNIVERSITY OF TORONTO

Problem Encoding - Device Domains

We define three discrete domains of ZDD variables to represent device entities:

e W, which corresponds to the set of all device arcs or interconnects

e D, which corresponds to the set of all device vertices as path sources such that d,
implies a route from v

e 5, which corresponds to the set of all device vertices as path sinks such that s,
implies a route to v

&% The Edward S. Rogers Sr. Department

§_§,§' of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

CGRA Path Enumeration

Algorithm 1 Simple Path Enumeration
1: function ENuMSP(V, A, h)
2 for veV do

3 PSpZdd[v] = {sy}

4 fori€[1, h] do

5: for veV do
6

7

8

0

« We developed a simple path enumeration
solution for directed graphs, constrained by
hop count

« Given the nature of the problem, the solution
is faster and simpler than SIMPATH

« Returns a table of ZDDs, one for each device

SpZdd[v] = UpDpTSP(V, A, PSpZdd)
SwAP(PSpZdd, SpZdd)
for veV do
SpZdd[v] = CarTPrOD({dy}, SpZdd[V])
10: return SpZdd

vertex, summarizing all paths starting at that .
12: function UrDTSP(V, A, PSpZdd)

vertex 13: rZdd = ¢

. 14: for alla=(v,u) €A do

V + Set of Simple Paths (Zdd) it Wy b= (V) €A)
16: wZdd = NoTSupPSET(PSpZdd[u], vIncZdd)
17: aZdd = CARTPROD({Wg}, wZdd)
18: rZdd = UNION(rZdd, aZdd)

19: return rZdd

&% The Edward S. Rogers Sr. Department

’%" of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

CGRA Path Enumeration

o For hop counth =2:

SpZdd[0]={{dy, W S5}, {do, Wo, Wy, Sz}, {do, Wo, W, S4}},
SpZdd[1]={{dy, wy, S, W3}, {d;, wy, S}, {d;, Wy, Wy, Ss}}, ... etc
the total number of paths is 28

o For h =3, the total number of paths is 46

o For h =4, the count increases to 58

e Forh =5, it becomes 60

« No paths have more than 5 hops

0 gzgoe

6

‘ﬁ@ The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

2 UNIVERSITY OF TORONTO

Problem Encoding - DFG Domains

To represent DFG mappings, we define another set of ZDD variable domains:

« W', which corresponds to the set of all interconnects in the device, with one-to-one
mapping to W

« D', which corresponds to the set of all possible mappings of DFG source nodes to
device vertices such that d', | implies a dataflow edge from node n mapped to
vertex v

« S', which corresponds to the set of all possible mappings of DFG sink nodes to
device vertices such that s, implies a dataflow edge to node n mapped to v

&% The Edward S. Rogers Sr. Department

f;*_g’; of Electrical & Computer Engineering

XJ UNIVERSITY OF TORONTO

Single DFG Node Mapping Enumeration

o If wetakea single DFG node in Algorithm 2 Node Mapping Enumeration
isolation and consider mappingittoa L function ExumNobeMar(n, v)
devi I 2: M={meN:{n,m)eE}

evice vertex, we can enumerate a 3. if [M| = 0 then

4

possible mappings of the dataflows to rZzdd = {d], }

the fanout of that node 5 else
6: rZdd =T
o In a nutshell, the fanout of a node n 7. for allmeM do
mapped to vertex Vv is the cartesian 8: spZdd = REN(SpZdd[v], D, 5)
duct of all ibl tes t I 0: rZdd = CARTPROD(rZdd, spZdd)
product of all possible routes to a o 1Zdd — LEGA(1Zdd, M)

possible placements of n’s fanouts, "
performed in the DFG domains

return r7Zdd

&% The Edward S. Rogers Sr. Department

§_§,§' of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

Single DFG Node Mapping Enumeration

(N

o Enumerating all possible mappings of
n=2toVv =2, while restricting hop ;
count to 2, yields three possible | o

mappings: .jf\ ’;25)’ .

{{wy, d'5 0, Wy, S'5 4},)

{wy, d'; 5, S'3.4} b

{Ws, d' 5, We, S's 41})

(60
\(5) /

IN
3)

&% The Edward S. Rogers Sr. Department

i
&

of Electrical & Computer Engineering

DFG Mapping Enumeration

Algorithm 3 Mapping Enumeration

o Using Single node mapping 1: function ENuMMaP(V, A, N, E)
enumeration, we can enumerate the . mapﬁz'di: {g} > mappings of [0, n— 1]
3: for n € do
entire DFG mappings basically as a 4 accZdd = ¢
rtesian pr f all DFG nodes’ ; A
ca tes an p oduct of a G nodes 6: if OP(n) € OPS(v) then continue
mappings T n2vZdd = ENUMNODEMAP(N, V)
® Legalization StEDS drOp solutions that 8: compMapsZdd = LEGB(mapsZdd, v, n)
9: updtMapZdd = CARTPROD(
OVeruse resources n2vzZdd, compMapsZdd
)
10: updtMapZdd = LEcC(updtMapZdd, v, n)
11: updtMapZdd = REN(updtMapZdd,W)
12: accZdd = UNI1ON(accZdd, updtMapZdd)
13: mapsZdd = accZdd
14: return mapsZdd

‘%@ The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

@ UNIVERSITY OF TORONTO

G

DFG Mapping Enumeration

e With I/Os pinned to simplify the example, mapping — —

IN {IN IN
enumeration returns three solutions: _(0) _(0) (1)
1 1) 1) 1 1 1]] i " I l
{{w'y, d'g 0 W'y, d'y 3, W'y, d'pp, W'y, d'g 4, W'y, d'; 5}, v v
{W' d ! W' d ! W' d ' W' W' Wl d ' d ' } ‘}’ _-"'\.\ p.s '—3*
0 Yo0 W1 Ugz Wi Ugo Woy Wa Wig, Us gy Uzss, ‘; >(\2§ ! (';4) (&) (+$
' 1 ' 1 ' 1 ' ' 0 ' ' o4 Youe 3
{Wo, d'o 00 W'y, 'y 3, W's, W'y, Wy, d'g 0 Wy, d'5 4, O'7 53} N ' L] |
o The ZDD representing all possible solutions is a DAG, * 7
choosing an optimal solution is as simple as assigning cost % ot (*Sf;
to ZDD variables and running linear time shortest path from T
rootto T v 1Y1
o Minimizing routing yields the first mapping (%) ol ()

&% The Edward S. Rogers Sr. Department

’%" of Electrical & Computer Engineering

@ UNIVERSITY OF TORONTO

G

Detailed DFG Mapping Enumeration

« Note that DFG nodes mapping to PEs is explicit,

but the exact value to wire mapping is implicit; 533 ‘ (®) f%
another run of the algorithm, but with wire | é ;
domain W" annotated with DFG nodes, such that *?2? n é)—-> .
W", , implies arc a caries value produced by DFG ~ 4-5 ’ =
node n N .

« Breaking the problem in two steps allows us to) ®) 5 | O
use O(E) ZDD variables for interconnects domain 10 I
in the larger problem instead of O(ExN) cié’f ouT ci%r

&% The Edward S. Rogers Sr. Department

§_§,§' of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

Runtime Control

« Even with a highly efficient data structure to represent all possible mappings, the
number of solutions is still massive and the size of the enumeration ZDD still

explodes for larger problems
« Most of the enumerated solutions are far from optimal

« Therefore, we relied on two techniques to keep runtime in check
o Pre-Placement
o lterative Minimum
Experimentally, these techniques have minimal impact on quality of results

o In most cases an optimal solution is found
o In fewer cases the solution is just few interconnects away from optimal (<5%)

&% The Edward S. Rogers Sr. Department

_cew

of Electrical & Computer Engineering

N/ UNIVERSITY OF TORONTO

Pre-Placement

o The idea is to have an optional
placement step using traditional
solution such as simulated annealing
to limit the enumeration space of valid
solutions

o In case the placement result is too
restrictive, we still allow a user defined
tolerance to help the routing step

as

ﬁ%};ﬁﬁ@ The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

2 UNIVERSITY OF TORONTO

lterative Minimum

« Many of the enumerated partial
mappings are far from optimal

° Wlth !teratlve minimum, Wlth each 1: function ITERMIN(sZdd, MIC)
iteration we only keep minimum cost 22 Zdd=1
P PP g 4 minZdd = MIN(sZdd)

« The MIN function returns all rZdd = UNION(rZdd, minZdd)
minimum cost sets in a single pass sZdd = DIFF(sZdd, minZdd)

 lIteration count is user defined

Algorithm 4 Iterative Minimum

=] [mx] ¢

return rZdd

&% The Edward S. Rogers Sr. Department

§_§,§' of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO

Experimental Study

» The proposed solution was implemented

: _ H HEY Kernel DFG | CGRA ILP [4] Heu [5] This Work

In the CG RA ME framework [1] Ut”lz'ng Name Size Size Runtime(s) | Runtime(s) | Runtime(s)
the CUDD [2] and EXtra [3] ||brar|eS accumulate 18 4x4 231.83 TO 0.23
. cap 24 6x6 1881.81 65.27 0.39
« We use LLVM compiled kernels from conv?2 16 | 4x4 11.82 11.86 0.18
. . . onv3 24 6x6 132.72 63.94 0.31
benchmarks distributed with CGRA-ME | ..c; 2 | 6x6 TO TO 0.20
. atri It 17 4x4 7.56 25.7 0.18
- We target a single-context HyCube milts2 | 25 | 66 | 203543 108.56 2.83
i i nomem]1 6 x4 4.27 4.11 0.10
¢ We Compare our mapper Wlth Optlmal simple2 12 6x6 43.25 93.78 0.32
and heuristic mappers of the current simple 12 | x4 57.99 19.77 0.29
sum 7 dx4 2.36 11.48 0.11

CGRA-ME release
o Two orders of magnitude speedup was
obtained

[1] J. Anderson et al, “CGRA-ME: An Open-Source Framework for CGRA Architecture and CAD Research”, ASAP 2021

[2] F. Somenzi, "CUDD package", Jan 2016. [Online]. Available: https://github.com/ivmai/cudd

[3] A. Mishchenko, “An Introduction to Zero-Suppressed Binary Decision Diagrams,” Portland SU, Tech. Rep., June 2001

[4] S. Chin and J. Anderson, "An architecture-agnostic integer linear programming approach to CGRA mapping," in Proc. DAC, 2018.
[5] M. J. P. Walker and J. Anderson, "Generic connectivity-based CGRA mapping via integer linear programming," in IEEE FCCM, 2019.

&% The Edward S. Rogers Sr. Department
aww
e

of Electrical & Computer Engineering

XJ UNIVERSITY OF TORONTO

Experimental Study

Larger problems beyond the capability of previous
solutions were also evaluated varying parameters
of the runtime control techniques

In general, increasing tolerance and iteration count
increases the number of enumerated solutions,
possibly from O

It is possible for a pre-placement to be infeasible to
route; hence, the need for increasing tolerance
Runtime can grow exponentially with higher
iteration counts and, more severely, pre-placement
tolerance; therefore, use must be with caution

Kernel CCGRA Tolerance | Min Iter | #Sols | Runtime
Name Size Count (s)
12 0.28
108 0.26
532 0.34
3624 0.73
mac 6x6 5563 0.81
3068 0.77
0 X
1588 10.00
14008 156.19
0 | 0 X
0 2 32 0.49
exp-4 4x4 | l 0 -
| 2 1844 0.68
0 <3 0 X
o 1 1 72 3.44
cosh-4 o8 l y 585 5.40
1 3 654 8.01
0 < 0 X
L 1 1 0 X
cap 66 1 2 4310 | 3.84
I 3 13817 12.14
U b.e
1] X
Ccl’llffn 6x6 276 1.81
1296 4.63
3714 0.58
23804 0.61
long- . 11606 2.63
chain S8 070 7.08
1484 82.28
26388 612.48
0 X
FFT 16x16 304 40.28
15320 0927.44
TO TO

Conclusion and Future Work

« We presented a ZDD-based CGRA mapper and illustrated its speed advantage
when compared to state-of-the-art exact and heuristic solvers

« The immediate next step would be to support
o multi-context CGRA architectures
o multi-output operations
o predicated execution

« We believe our solution is flexible enough to support these features systematically
without sacrificing speed or quality of results

« The next major development would utilize the enumeration feature of our solution
to guide the design of domain-specific CGRA architectures

&% The Edward S. Rogers Sr. Department

f;*_; of Electrical & Computer Engineering

XJ) UNIVERSITY OF TORONTO

Thank You for Listening, Questions?

&% The Edward S. Rogers Sr. Department

i
&

of Electrical & Computer Engineering

N/ UNIVERSITY OF TORONTO

	CGRA Mapping Using Zero-Suppressed Binary Decision Diagrams
	CGRA: Coarse Grained Reconfigurable Architecture
	CGRA Mapping
	The Challenge
	Zero Suppressed Binary Decision Diagrams (ZDDs)
	Zero Suppressed Binary Decision Diagrams (ZDDs)
	Simple Path Enumeration and SIMPATH
	Intuition
	Problem Formulation
	Problem Encoding - Device Domains
	CGRA Path Enumeration
	CGRA Path Enumeration
	Problem Encoding - DFG Domains
	Single DFG Node Mapping Enumeration
	Single DFG Node Mapping Enumeration
	DFG Mapping Enumeration
	DFG Mapping Enumeration
	Detailed DFG Mapping Enumeration
	Runtime Control
	Pre-Placement
	Iterative Minimum
	Experimental Study
	Experimental Study
	Conclusion and Future Work
	Thank You for Listening, Questions?

