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CGRA: Coarse Grained Reconfigurable Architecture

● Array of programmable processing 
elements (PEs)

● PEs are word-level functional unit 
(think ALU)

● PEs are connected to nearest 
neighbours through word-level 
programmable switches arranged 
in a regular topology, like a mesh 
or torus

● Less silicon committed to 
programmability

● Lie between ASICs and FPGAs  on 
the spectrum of power,  
performance, area, and flexibility
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CGRA Mapping

● The key CAD step for implementing an application on a CGRA
● Inputs are application kernel compiled into a dataflow graph (DFG) and a device 

model graph
● Mapping assigns each DFG node to a device vertex and each DFG edge to a set of 

device arcs
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The Challenge

● CGRA routing is highly restricted when compared to modern FPGAs
● This restriction limits the success of traditional CAD solution
● Difficult to decouple placement and routing
● Many heuristic solutions were proposed, including simulated annealing [1], genetic 

algorithms [2], and graph embedding [3] among others; many of which are 
architecture-specific

● Some have shown such heuristics can be ineffective for highly constrained 
problems and opted for optimal or near optimal solutions using ILP formulation 
and general optimization solvers [4][5]

● Unfortunately, such solutions with general solvers have not been shown to scale
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Zero Suppressed Binary Decision Diagrams (ZDDs)

● A compact representation for solving problems in 
set theory [1]

● A ZDD represents a family of sets as a DAG, with 
internal nodes representing elements that appear 
in at least one set, and two terminal nodes ⊥ and 
T

● Every internal node has HI/LO edges pointing to 
the residual subfamilies that  do/do not contain the 
source element

● Paths from the root node to T represent the family 
members
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Zero Suppressed Binary Decision Diagrams (ZDDs)

● Set operations on ZDD are implemented using recursive procedures 
that utilize dynamic programming [1][2]

● Efficient implementations available for set union, intersection, 
difference, product, maximal, minimal, subset, superset, … etc.

● Utilized in a variety of applications, including logic synthesis, graph 
optimization, and data mining among others

● Then… a hibernation!
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Simple Path Enumeration and SIMPATH
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● ZDD was proposed as an efficient 
representation for enumeration of simple 
(cycle free) paths in undirected graphs, along 
with fast algorithm for the ZDD construction 
called SIMPATH [1]

● For an 8x8 mesh, ~800 billion paths were 
represented using ~33K node ZDD

● The proposed solution reignited research in 
ZDD applications, especially in graph 
enumerations [2]

[1] D. E. Knuth, "The Art of Computer Programming", Addison-Wesley, 2011, vol. 4A: Combinatorial Algorithms
[2] H. Iwashita, et al, "ZDD-Based Computation of the Number of Paths in a Graph", TCS-TR-A-12-60, September 18, 2012



Intuition

● You might start to see how the 
path enumeration is related to 
our mapping problem

● A single DFG node mapping is 
simply a set of edges from 
where the node is mapped to 
where all the uses are mapped

● Each mapping solution is simply 
a set of used edges in the device 
annotated by owning DFG value
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Problem Formulation

● The input
○ Application kernel DFG with operation 

nodes N and dataflow edges E.⊆.N.× .N

○ Device model graph with vertices V
representing PEs and arcs A.⊆.V.× .V

representing routing
○ The set of opcodes 

O.=.{IN,.OUT,.LD,.STR,.ADD,.SUB, …}
■ OP: N → O

■ OPS: V → 𝐏(O)

● The output
○ Mapping N → V and E → 𝐏(A)
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Problem Encoding - Device Domains

We define three discrete domains of ZDD variables to represent device entities:

● W, which corresponds to the set of all device arcs or interconnects
● D, which corresponds to the set of all device vertices as path sources such that dv

implies a route from v

● S, which corresponds to the set of all device vertices as path sinks such that sv

implies a route to v
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CGRA Path Enumeration

● We developed a simple path enumeration 
solution for directed graphs, constrained by 
hop count

● Given the nature of the problem, the solution 
is faster and simpler than SIMPATH

● Returns a table of ZDDs, one for each device 
vertex, summarizing all paths starting at that 
vertex

V ↦ Set of Simple Paths (Zdd)
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CGRA Path Enumeration

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

12

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops

● For hop count h = 2:

SpZdd[0]={{d0, w0, s2}, {d0, w0, w2, s3}, {d0, w0, w5, s4}},

SpZdd[1]={{d1, w1, s2, w3}, {d1, w1, s3}, {d1, w1, w7, s5}}, … etc

the total number of paths is 28

● For h = 3, the total number of paths is 46
● For h = 4, the count increases to 58
● For h = 5, it becomes 60
● No paths have more than 5 hops



Problem Encoding - DFG Domains

To represent DFG mappings, we define another set of ZDD variable domains:

● W', which corresponds to the set of all interconnects in the device, with one-to-one 
mapping to W

● D', which corresponds to the set of all possible mappings of DFG source nodes to 
device vertices such that d'v,n implies a dataflow edge from node n mapped to 
vertex v

● S', which corresponds to the set of all possible mappings of DFG sink nodes to 
device vertices such that s'v,n implies a dataflow edge to node n mapped to v
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Single DFG Node Mapping Enumeration

● If we take a single DFG node in 
isolation and consider mapping it to a 
device vertex, we can enumerate all 
possible mappings of the dataflows to 
the fanout of that node

● In a nutshell, the fanout of a node n
mapped to vertex v is the cartesian 
product of all possible routes to all 
possible placements of n’s fanouts, 
performed in the DFG domains
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Single DFG Node Mapping Enumeration

● Enumerating all possible mappings of 
n.=.2 to v.=.2, while restricting hop 
count to 2, yields three possible 
mappings:

{{w2, d'2,2, w7, s'5,4},

{w2, d'2,2, s'3,4},

{w5, d'2,2, w8, s'5,4}}
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DFG Mapping Enumeration

● Using single node mapping 
enumeration, we can enumerate the 
entire DFG mappings basically as a 
cartesian product of all DFG nodes’ 
mappings

● Legalization steps drop solutions that 
overuse resources
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DFG Mapping Enumeration

● With I/Os pinned to simplify the example, mapping 
enumeration returns three solutions:

{{w'0, d'0,0, w'1, d'1,3, w'2, d'2,2, w'7, d'3,4, w'11, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, d'2,2, w'7, w'8, w'11, d'5,4, d'7,5},

{w'0, d'0,0, w'1, d'1,3, w'5, w'7, w'8, d'4,2, w'11, d'5,4, d'7,5}}

● The ZDD representing all possible solutions is a DAG, 
choosing an optimal solution is as simple as assigning cost 
to ZDD variables and running linear time shortest path from 
root to T

● Minimizing routing yields the first mapping
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Detailed DFG Mapping Enumeration
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● Note that DFG nodes mapping to PEs is explicit, 
but the exact value to wire mapping is implicit; 
another run of the algorithm, but with wire 
domain W'' annotated with DFG nodes, such that 
w''a,n implies arc a caries value produced by DFG 
node n

● Breaking the problem in two steps allows us to 
use O(E) ZDD variables for interconnects domain 
in the larger problem instead of O(E×N)



Runtime Control

● Even with a highly efficient data structure to represent all possible mappings, the 
number of solutions is still massive and the size of the enumeration ZDD still 
explodes for larger problems

● Most of the enumerated solutions are far from optimal
● Therefore, we relied on two techniques to keep runtime in check

○ Pre-Placement
○ Iterative Minimum

● Experimentally, these techniques have minimal impact on quality of results
○ In most cases an optimal solution is found
○ In fewer cases the solution is just few interconnects away from optimal (<5%)
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Pre-Placement

● The idea is to have an optional 
placement step using traditional 
solution such as simulated annealing 
to limit the enumeration space of valid 
solutions

● In case the placement result is too 
restrictive, we still allow a user defined 
tolerance to help the routing step
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Iterative Minimum

● Many of the enumerated partial 
mappings are far from optimal

● With iterative minimum, with each 
iteration we only keep minimum cost 
partial mappings

● The MIN function returns all 
minimum cost sets in a single pass

● Iteration count is user defined
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Experimental Study

● The proposed solution was implemented 
in the CGRA-ME framework [1] utilizing 
the CUDD [2] and Extra [3] libraries

● We use LLVM compiled kernels from 
benchmarks distributed with CGRA-ME

● We target a single-context HyCube
● We compare our mapper with optimal 

and heuristic mappers of the current 
CGRA-ME release

● Two orders of magnitude speedup was 
obtained
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Experimental Study

● Larger problems beyond the capability of previous 
solutions were also evaluated varying parameters 
of the runtime control techniques 

● In general, increasing tolerance and iteration count 
increases the number of enumerated solutions, 
possibly from 0

● It is possible for a pre-placement to be infeasible to 
route; hence, the need for increasing tolerance

● Runtime can grow exponentially with higher 
iteration counts and, more severely, pre-placement 
tolerance; therefore, use must be with caution
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Conclusion and Future Work

● We presented a ZDD-based CGRA mapper and illustrated its speed advantage 
when compared to state-of-the-art exact and heuristic solvers

● The immediate next step would be to support
○ multi-context CGRA architectures
○ multi-output operations
○ predicated execution

● We believe our solution is flexible enough to support these features systematically 
without sacrificing speed or quality of results

● The next major development would utilize the enumeration feature of our solution 
to guide the design of domain-specific CGRA architectures
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Thank You for Listening, Questions?
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