
Improving the Quality of Hardware
Accelerators through automatic Behavioral

Input Language Conversion in HLS
Md Imtiaz Rashid and Benjamin Carrion Schafer

{MdImtiaz.Rashid,schaferb}@utallas.edu

27th Asia and South Pacific Design Automation Conference
ASP-DAC 2022

Department of Electrical and Computer Engineering

High-Level Synthesis Overview

Allocation

Scheduling

Binding

High-Level
Synthesis

(b) HLS

#define pragma1 array=reg
#define pragma2 loop=all
#define pragma3 loop=all

techlibHLS
(ASIC, FPGA)

Cin (ANSI-C/C++/SystemC)

#include ”pragma.h”
int buffer[16]; //pragma1
// pragma2
for(i=7;i>0;i--)

buffer[i]=buffer[i-1];
buffer[0] = in0;
sum= buffer[0];
// pragma3
for (i= 1; i< 16; i++)

sum += buffer[i];
return (sum/16);

(a) HLS Inputs

pragma.h

fmax

RTL
(.v/.vhdl)

RTL (Verilog, VHDL)

Reports (Area, timing, power)

Area

Latency

!𝑃

Logic synthesis scripts

Testbench, simulation models

(c) HLS Outputs

array=reg
loop=all
loop=all

array=reg
loop=partial
loop=partial

array=ram
loop=0
loop=0

Input
• Behavioral description
• Directive setting
• Technology library, fmax

High-Level Synthesis
• Allocation
• Scheduling
• Binding

Output
• RTL Design
• QoR reports
• Script for Logic Synthesis
• Simulation Models

Introduction
• High-Level Synthesis tools support

multiple input languages. E.g.,
ANSI-C, C++, SystemC, Matlab

• HLS tools are built in a modular
way

• Language dependent parsers for
each supported language
• Syntax checks
• Technology independent

optimizations
• Parsers output the optimized CDFG

in a common tool format à allows
to re-use the rest of the HLS flow

ANSI-C SystemC Matlab

Intermediate
Representation

(IR)

Verilog

cparser.exe scparser.exe mparser.exe

verilogout.exe vhdlout.exe

VHDL

Front-end

Back-end

Python

pyparser.exe….

Resource Allocation
Scheduling

Binding
Main HLS

steps

Dead-code
Constant prop.
Common sub-expr

Synthesis
directives

(loops, arrays,
func)

hls.exe

• HLS allows to decouple
functional description from
implementation through
synthesis
directives/pragmas

• These control how to
synthesize:
• Arrays : RAM, Reg
• Loops: Unroll, pipeline
• Functions: inline or not

Functional Equivalent Design Generation

#define pragma1 array=reg
#define pragma2 loop=all
#define pragma3 loop=all

techlibHLS
(ASIC, FPGA)

RTL (Verilog, VHDL)

Reports (Area, timing, power)

Cin (ANSI-C/C++/SystemC)

#include ”pragma.h”
int buffer[8]; //pragma1
// pragma2
for(i=7;i>0;i--)

buffer[i]=buffer[i-1];
buffer[0] = in0;
sum= buffer[0];
// pragma3
for (i= 1; i< 8; i++)

sum += buffer[i];
return (sum/8);

Area

Latency
[clk cycles]

!𝑃

HLS Inputs HLS Outputs

Logic synthesis scripts

Testbench, simulation models

Allocation

Scheduling

Binding

High-Level
Synthesis

HLS Inputs HLS HLS output

pragma.h

fHLS

array=reg
loop=all
loop=all

array=reg
loop=partial
loop=partial

array=ram
loop=0
loop=0

RTL
(.v/.vhdl)

• AES block cipher written in ANSI-C,
SystemC, CHW (BDL) (all using same
data bitwidths)

• Set different synthesis directive
combinations for each AES
description and compare the
Pareto-optimal designs found

• ADRS: Average Distances to
Reference Set: The lower the
better à Different input languages
lead to different trade-off curves

Motivational Example

High-Level
Synthesis
ANSI-C

TechlibHLS
(ASIC, FPGA)

AES

pragma1: loop=all
pragma2: loop=all
pragmaN: array=RAM

pragmai

RTLC
QoRC

Generate unique combination of
synthesis directives (pragmas)

- Exhaustive enumeration -

ANSI-C CHW(BDL)

fHLS

Translate Behavioral description
to other input languages

Functional
Verification

SystemC

High-Level
Synthesis
SystemC

High-Level
Synthesis
CHW(BDL)

RTLSC RTLBDL
QoRSC QoRBDL

Area

Latency [clk cycles]

!𝑃C

!𝑃SC

!𝑃BDL

ANSI-C
SystemC
CHW BDL

• Easy and inexpensive way to hide
the source code

• Functional equivalent source file is
generated, which is virtually
impossible for humans to
understand and extremely difficult
to reverse engineer

• The obfuscation process typically:
1. removes comments
2. Renames variables
3. adds redundant expressions à

Parser dependent

Source Code Obfuscation

Source code
obfuscation

Obfuscation primitives

Comment removal,
space removal, variable

renaming, mangling

Front-end Parser
(Dead-code elimination,
Constant propagation,

Common sub-expr
elimination)

RTL generator Back-end
(Verilog or VHDL)

High-Level Synthesis
(1) Allocation
(2) Scheduling
(3) Binding

ANSI-C

SystemC

CHW(BDL)

Behavioral IP
(BIP)

CobfSCobfBDLobf

Best QoR?

Proposed Flow

Behavpred

(e.g.,ANSI-C)

techlibHLS

fmax

Inputs

Ar
ea

 [u
m

2]

Latency
[clk cycles]

ANSI-C
SystemC
C for HWNew Unseen

Behavioral
Description

(Behavin)

SystemC
(Behavb)

BDL (CHW)
(Behavc)High-Level Synthesis

Design Space Exploration
(Exhaustive or Heuristic)

Latency [clk cycles]

Ar
ea

 [μ
m

2]

!𝑃𝐶
Extract Synthesis directives
of Pareto-optimal designs

(POD) + Δ ADRS

bdl2systemc

ansic2systemc

systemC2bdl

: :

Step 3: Language
Translator

Synthesis
Directives
POD + Δ

ADRS

HLS Rest of supported
languages with

directives POD + Δ ADRS

HLS SystemC

HLS BDL

Outputs

Step 2 : HLS DSE

Step 4 : Pragma Extraction

Step 5: HLS with
POD Pragmas

Phase II
Optimal Designs

Generation
(b)

Full DSE Language selection

Step 1 : Language Selection

cv

High-Level Synthesis Design Space
Exploration of training benchmarks

(Exhaustive Enumeration)

Training
Benchmarks

ANSI-C,
SystemC,

BDL

Training Benchmark 1

Training Benchmark N

Area

Latency [clk cycles]

!𝑃C

!𝑃SC

!𝑃BDL

ANSI-C
SystemC
CHW BDL

Graph-Based Neural Network
+ SVM Predictive Model

(Selects Reference Language)

Abstract
Syntax Tree

(AST)

Step 1 : HLS Design Space Exploration

Step 2 : Predictive Model Generation

Phase I
Training Phase

(a)

• Composed of 2 steps:
Step 1: Exhaustive enumeration of training benchmarks for all input languages
supported by target HLS tool
Step 2: Generate predictive model based on Graph Neuron Network +SVM to
select best input language based on the program structure

Phase 1: Training Phase

cv

High-Level Synthesis Design Space
Exploration of training benchmarks

(Exhaustive Enumeration)

Training
Benchmarks

ANSI-C,
SystemC,

BDL

Training Benchmark 1

Training Benchmark N

Area

Latency [clk cycles]

!𝑃C

!𝑃SC

!𝑃BDL

ANSI-C
SystemC
CHW BDL

Graph-Based Neural Network
+ SVM Predictive Model

(Selects Reference Language)

Abstract
Syntax Tree

(AST)

Step 1 : HLS Design Space Exploration

Step 2 : Predictive Model Generation

Phase I
Training Phase

(a)

• Input:
o A behavioral description to be synthesized HLS

• Output:
o The converted behavioral description in the language supported by the HLS tools that will lead to the

best QoR
• Composed of 2 steps:

Step 1: Data Formatting :
1. AST Generation
2. AST Matrix representation

Step 2:
1. Trained Graph Convolutional Neural Network to extract features
2. Trained Support Vector Machine (SVM)

Predictive Model

Behavin AST
Generation

AST Matrix
representation

Trained Graph-
Convolutional

Network (GCN)

Trained Support
Vector Machine

(SVM)

Behavpred

Data formatting Predictive Model

• Inputs: Outputs:
1. New Unseen behavioral description in one of the supported languages 1. Pareto-optimal designs
2. Techlib, fmax

• Composed of 5 steps:
Step 1: Input language selection
Step 2: HLS Design Space exploration (exhaustive for small designs or heuristic)
Step 3: Automatic input language converter
Step 4: Pragma extraction for Pareto-optimal designs
Step 5: Insert pragmas of Pareto-optimal designs in predicted best input language

Phase 2: Optimal Design Generation

Behavpred

(e.g.,ANSI-C)

techlibHLS

fmax

Inputs

Ar
ea

 [u
m

2]

Latency
[clk cycles]

ANSI-C
SystemC
C for HWNew Unseen

Behavioral
Description

(Behavin)

SystemC
(Behavb)

BDL (CHW)
(Behavc)High-Level Synthesis

Design Space Exploration
(Exhaustive or Heuristic)

Latency [clk cycles]

Ar
ea

 [μ
m

2]

!𝑃𝐶
Extract Synthesis directives
of Pareto-optimal designs

(POD) + Δ ADRS

bdl2systemc

ansic2systemc

systemC2bdl

: :

Step 3: Language
Translator

Synthesis
Directives
POD + Δ

ADRS

HLS Rest of supported
languages with

directives POD + Δ ADRS

HLS SystemC

HLS BDL

Outputs

Step 2 : HLS DSE

Step 4 : Pragma Extraction

Step 5: HLS with
POD Pragmas

Phase II
Optimal Designs

Generation
(b)

Full DSE Language selection

Step 1 : Language Selection

Experimental Setup
● High-Level Synthesis tools: NEC CyberWorkBench v.6.1.1

● ANSI-C, SystemC, CHW (BDL)

● HLS technology : Nangate Open-source 45nm

● HLS synthesis frequency: 100Mhz

● Benchmarks: CHStone and S2CBench

● Source code obfuscator: Stunnix

● Computer platform
o Intel(R) Xeon E7 with 16GBytest of RAM
o CentOS Linux release 7.8.2003 (Core)

● Compare our proposed approach with exhaustive exploration of all benchmarks for each input
languages

● Relax the candidate constraint by considering design candidates within 1.5% ADRS from the
Pareto-optimal ones for each input language

Platform

Evaluation

Tools

Experimental Result: Un-Obfuscated Benchmarks

• Observations:
• Our proposed method is effective finding the input languages that will lead to the overall best results
• Relaxing the pool of candidates leads to better results although it slightly increases the running time, on average by 1.1x

and 1.3 for the 1.5% ADRS and 3% ADRS cases respectively.

Experimental Result: Obfuscated Benchmarks

• Observations:
• The SystemC parser does a very good job optimizing away redundant expressions introduced by the obfuscator

• We have shown that the quality of the synthesis result strongly
depends on the input language parser

• This is even more pronounced in the case of source code
obfuscation

• We have presented an automatic input language translator for typical
input languages used in HLS and a GCN+SVM approach to
determine which input language is more likely to lead to better
results

• Experimental results show the effectiveness of our proposed
approach

Conclusions

15

Thank YouThank You

