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What is Physical Design Tool Parameter Tuning?
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The overview of the parameter tuning of a physical design tool
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Current Status & Challenges in Tool Parameter Tuning Issue

1 Oceans of values of design parameters need to be determined or tuned

2 Multiple quality-of-result (QoR) metrics (e.g., area, power, and delay) to be optimized
3 "Black-box" parameter-to-performance mappings: no explicit function expressions

4 Time-consuming EDA tool evaluation

5 Existing methods: Heuristic Method-based, Machine Learning-based
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Heuristic-based Work: SynTunSys (STS)!?
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The framework of the SynTunSys.

'J. Kwon et al., “Scalable auto-tuning of synthesis parameters for optimizing high-performance

processors," ISLPED, 2016.
M. Ziegler et al., “A synthesis-parameter tuning system for autonomous design-space
6/14

exploratio" DATE, 2016.



Heuristic-based Work: SynTunSys (STS)
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The illustration of the interaction of parameters, primitives, and scenarios in the SynTunSys.
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The learning decision algorithm of the SynTunSys.
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Machine learning-based Works:
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The associated tuning framework in DAC'19".

7. Kwon et al., “A learning-based recommender system for autotuning design flows of industrial

high-performance processors," DAC, 2019.



Machine learning-based Works: (II)
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Deep reinforcement learning-based parameter tuning of a placement tool'.

'A. Agnesina et al., “VLSI placement parameter optimization using deep reinforcement

learning," ICCAD, 2020.
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Machine learning-based Works: (III)
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The diagram of the workflow proposed in MLCAD'19".

Y. Ma et al., “CAD tool design space exploration via Bayesian optimization," MLCAD, 2019.  11/14



Machine learning-based Works: (IV)
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An example of sampling by clustering in ASPDAC’20".

!Z. Xie et al., “FIST: A feature-importance sampling and tree-based method for automatic design
flow parameter tuning," ASPDAC, 2020. 12/14



Conclusion & Future Directions

¢ A survey of recent line of arts in tool parameter tuning
¢ Parameter space auto-pruning

¢ Rethinking Gaussian process in iterative refinement tuning frameworks like Bayesian
optimization

¢ Collectively considering parameter auto-tuning of multiple tools exploited in the
whole design flow
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