

Jonas Krautter, Mahta Mayahinia, Dennis R. E. Gnad, Mehdi B. Tahoori | 2022-01-20

INSTITUTE OF COMPUTER ENGINEERING - CHAIR OF DEPENDABLE NANO COMPUTING

KIT - University of the State of Baden-Wuerttemberg and National Research Centre of the Helmholtz Association

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Motivation

Memristive memory close to reaching SRAM/DRAM performance

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Motivation

Memristive memory close to reaching SRAM/DRAM performance

Major benefits: Power, density, efficiency, non-volatility

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Memristive memory close to reaching SRAM/DRAM performance
- Major benefits: Power, density, efficiency, non-volatility
- Different emerging technologies: STT-MRAM, ReRAM, PCM, ...

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Memristive memory close to reaching SRAM/DRAM performance
- Major benefits: Power, density, efficiency, non-volatility
- Different emerging technologies: STT-MRAM, ReRAM, PCM, ...
- Aside from challenges for manufacturability: Security a major concern!

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Motivation

- Memristive memory close to reaching SRAM/DRAM performance
- Major benefits: Power, density, efficiency, non-volatility
- Different emerging technologies: STT-MRAM, ReRAM, PCM, ...
- Aside from challenges for manufacturability: Security a major concern!
- Rowhammer is still a problem in DRAM...¹

¹ Frigo et al., "TRRespass: Exploiting the Many Sides of Target Row Refresh", S&P 2021

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Motivation

• Reliable write is asymmetric

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Reliable write is asymmetric
- $0 \rightarrow 1$ vs. $1 \rightarrow 0$ have different delay/power

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Reliable write is asymmetric
- $0 \rightarrow 1$ vs. $1 \rightarrow 0$ have different delay/power
- This is the case for almost all memristive memory technologies

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- $0 \rightarrow 1$ vs. $1 \rightarrow 0$ have different delay/power
- This is the case for almost all memristive memory technologies
- \bullet \Rightarrow Self-terminated write¹ proposed for performance benefits

¹ Suzuki et al., "Cost-Efficient Self-Terminated Write Driver for Spin-Transfer-Torque RAM and Logic", IEEE Trans. Magn. 2014

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- $0 \rightarrow 1$ vs. $1 \rightarrow 0$ have different delay/power
- This is the case for almost all memristive memory technologies
- $\blacksquare \Rightarrow Self-terminated write^1 proposed for performance benefits$
- $\blacksquare \Rightarrow$ Data-dependent timing can be exploited by an attacker!

¹ Suzuki et al., "Cost-Efficient Self-Terminated Write Driver for Spin-Transfer-Torque RAM and Logic", IEEE Trans. Magn. 2014

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Outline

Background and Related Work

3 Results

Discussion and Conclusion

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Outline

Background and Related Work

Results

Discussion and Conclusion

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Memristive Memory Technologies

Spin Transfer Torque Magnetic RAM (STT-MRAM):

[2 Parallel magnetization (LRS)

Resistive RAM (ReRAM):

Oxygen vacancy

Conducting filament (LRS)

Phase Change Memory (PCM):

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Self-Terminated Write Schemes

Transition	Timing	STT-MRAM/ReRAM encoding	PCM encoding
0→0	t _{ns}	LRS→LRS	HRS→HRS
0→1	t _{ss}	LRS→HRS	HRS→LRS
1→0	t _{fs}	HRS→LRS	LRS→HRS
1→1	t _{ns}	HRS→HRS	LRS→LRS

Different transitions have different timing (technology-dependent)

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Self-Terminated Write Schemes

Transition	Timing	STT-MRAM/ReRAM encoding	PCM encoding
0→0	t _{ns}	LRS→LRS	HRS→HRS
0→1	t _{ss}	LRS→HRS	HRS→LRS
1→0	t _{fs}	HRS→LRS	LRS→HRS
1→1	t _{ns}	HRS→HRS	$LRS \rightarrow LRS$

Different transitions have different timing (technology-dependent)

 $\bullet \ t_{\rm NS} < t_{\rm fS} < t_{\rm SS}$

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Transition	Timing	STT-MRAM/ReRAM encoding	PCM encoding
0→0	t _{ns}	LRS→LRS	HRS→HRS
0→1	t _{ss}	LRS→HRS	HRS→LRS
1→0	t _{fs}	HRS→LRS	LRS→HRS
1→1	t _{ns}	HRS→HRS	$LRS \rightarrow LRS$

- Different transitions have different timing (technology-dependent)
- $\bullet \ t_{\rm NS} < t_{\rm fS} < t_{\rm SS}$
- Terminating the write after successful transition
 - \Rightarrow Energy and performance benefits

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Transition	Timing	STT-MRAM/ReRAM encoding	PCM encoding
0→0	t _{ns}	LRS→LRS	HRS→HRS
$0 \rightarrow 1$	t _{ss}	LRS→HRS	HRS→LRS
1→0	t _{fs}	HRS→LRS	LRS→HRS
1→1	t _{ns}	HRS→HRS	LRS→LRS

- Different transitions have different timing (technology-dependent)
- $\bullet \ t_{\rm NS} < t_{\rm fS} < t_{\rm SS}$
- Terminating the write after successful transition
 - \Rightarrow Energy and performance benefits
- Performance benefit: Propagating the write time to architecture level

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Related Work

 First technology-specific attacks: Cold-boot attacks¹ (exploit non-volatility)

¹Halderman et al., "Lest we remember: cold-boot attacks on encryption keys", Comm. of the ACM 2009

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Related Work

• Asymmetric read and write power can reveal data²

¹Halderman et al., "Lest we remember: cold-boot attacks on encryption keys", Comm. of the ACM 2009

² lyengar et al., "Side channel attacks on STTRAM and low-overhead countermeasures", DFT 2016

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Related Work

- Asymmetric read and write power can reveal data²
- Power side-channel attacks on STT-MRAM³

¹Halderman et al., "Lest we remember: cold-boot attacks on encryption keys", Comm. of the ACM 2009

² lyengar et al., "Side channel attacks on STTRAM and low-overhead countermeasures", DFT 2016

³Khan et al., "Side-Channel Attack on STTRAM Based Cache for Cryptographic Application", ICCD 2017

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Related Work

- First technology-specific attacks: Cold-boot attacks¹ (exploit non-volatility)
- Asymmetric read and write power can reveal data²
- Power side-channel attacks on STT-MRAM³
- Bit-cell design to mitigate data-dependent leakage⁴

¹Halderman et al., "Lest we remember: cold-boot attacks on encryption keys", Comm. of the ACM 2009

² lyengar et al., "Side channel attacks on STTRAM and low-overhead countermeasures", DFT 2016

³Khan et al., "Side-Channel Attack on STTRAM Based Cache for Cryptographic Application", ICCD 2017

⁴Dodo et al., "Secure STT-MRAM bit-cell design resilient to differential power analysis attacks", TVLSI 2019

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Related Work

- First technology-specific attacks: Cold-boot attacks¹ (exploit non-volatility)
- Asymmetric read and write power can reveal data²
- Power side-channel attacks on STT-MRAM³
- Bit-cell design to mitigate data-dependent leakage⁴
- Cache-timing attacks with a similar threat model^{5,6}
 - \Rightarrow But they rely on distinguishing **cached** vs. **uncached** access!

¹Halderman et al., "Lest we remember: cold-boot attacks on encryption keys", Comm. of the ACM 2009

² lyengar et al., "Side channel attacks on STTRAM and low-overhead countermeasures", DFT 2016

³Khan et al., "Side-Channel Attack on STTRAM Based Cache for Cryptographic Application", ICCD 2017

⁴Dodo et al., "Secure STT-MRAM bit-cell design resilient to differential power analysis attacks", TVLSI 2019

⁵Osvik et al., "Cache attacks and countermeasures: the case of AES", RSA Conference 2006

⁶Yarom et al., "FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack", USENIX 2014

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Outline

Background and Related Work

results

Discussion and Conclusion

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Principle

Basic principle: Write-After-Write

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Principle

Victim process has secret data (e.g. encryption key)

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Basic principle: Write-After-Write
- Victim process has secret data (e.g. encryption key)
- Data resides in victim process address space, inaccessible to attacker

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Basic principle: Write-After-Write
- Victim process has secret data (e.g. encryption key)
- Data resides in victim process address space, inaccessible to attacker
- Goal: Force victim to **overwrite** attacker data in cache
 - \Rightarrow Timing side-channel for bitwise data extraction

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Basic principle: Write-After-Write
- Victim process has secret data (e.g. encryption key)
- Data resides in victim process address space, inaccessible to attacker
- Goal: Force victim to **overwrite** attacker data in cache ⇒ Timing side-channel for bitwise data extraction
- \Rightarrow Can be a **cache-miss** after the attacker filled the cache...

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Basic principle: Write-After-Write
- Victim process has secret data (e.g. encryption key)
- Data resides in victim process address space, inaccessible to attacker
- Goal: Force victim to **overwrite** attacker data in cache ⇒ Timing side-channel for bitwise data extraction
- ... or overwriting the attacker data directly (cache-hit)...

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Principle

- Basic principle: Write-After-Write
- Victim process has secret data (e.g. encryption key)
- Data resides in victim process address space, inaccessible to attacker
- Goal: Force victim to overwrite attacker data in cache ⇒ Timing side-channel for bitwise data extraction

... or many other variants! (not exclusive to cache)

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Principle

• Attacker wants to know bit b_i with $i \in \{0, 1, ..., 512\}$ (cache-line size)

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Principle

Attacker wants to know bit b_i with $i \in \{0, 1, ..., 512\}$ (cache-line size)

• Cache filled with 1 except for $b_i = 0$

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Attacker wants to know bit b_i with $i \in \{0, 1, ..., 512\}$ (cache-line size)
- Cache filled with 1 except for $b_i = 0$
- Victim overwrites cache line
 - \Rightarrow Write latency is t_{ns} , t_{fs} or t_{ss} depending on b_i

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Attacker wants to know bit b_i with $i \in \{0, 1, ..., 512\}$ (cache-line size)
- Cache filled with 1 except for $b_i = 0$
- Victim overwrites cache line
 - \Rightarrow Write latency is t_{ns} , t_{fs} or t_{ss} depending on b_i
- Victim execution time measurement using cycle counters (e.g. rdtsc)

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Simulation

Array level = Bit-cell level + address decoding + routing

¹ Dong et al., "NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory", TCAD 2012 ² Binkert et al., "The Gem5 Simulator", SIGARCH 2011

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Simulation

Array level = Bit-cell level + address decoding + routing

Architecture-level: Syscall Emulation and Full System

¹Dong et al., "NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory", TCAD 2012 ²Binkert et al., "The Gem5 Simulator", SIGARCH 2011

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Array level = Bit-cell level + address decoding + routing
- Architecture-level: Syscall Emulation and Full System
- Two ISA: ARMv8, x86_64

¹Dong et al., "NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory", TCAD 2012 ²Binkert et al., "The Gem5 Simulator", SIGARCH 2011

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Array level = Bit-cell level + address decoding + routing
- Architecture-level: Syscall Emulation and Full System
- Two ISA: ARMv8, x86_64
- 2-level cache architecture, both caches with self-terminated write

¹Dong et al., "NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory", TCAD 2012 ²Binkert et al., "The Gem5 Simulator", SIGARCH 2011

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Array level = Bit-cell level + address decoding + routing
- Architecture-level: Syscall Emulation and Full System
- Two ISA: ARMv8, x86_64
- 2-level cache architecture, both caches with self-terminated write
- Cache line width is 64 bytes

¹Dong et al., "NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory", TCAD 2012

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Array level = Bit-cell level + address decoding + routing
- Architecture-level: Syscall Emulation and Full System
- Two ISA: ARMv8, x86_64
- 2-level cache architecture, both caches with self-terminated write
- Cache line width is 64 bytes
- Write latency for 64 × 8 bits is maximum of write latency for each bit (all bits written in parallel)

¹Dong et al., "NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory", TCAD 2012 ²Binkert et al., "The Gem5 Simulator", SIGARCH 2011

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 1

• Attacker fills the cache with known pattern

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 1

Attacker fills the cache with known pattern

Victim overwrites attacker data when secret is loaded into cache

```
void victim_code_v1() {
    secret[0] &= 0xFF;
}
```

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 1

Attacker fills the cache with known pattern

Victim overwrites attacker data when secret is loaded into cache

```
void victim_code_v1() {
    secret[0] &= 0xFF;
}
```

Attacker measures data-dependent victim execution time

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 1

Attacker fills the cache with known pattern

Victim overwrites attacker data when secret is loaded into cache

```
void victim_code_v1() {
    secret[0] &= 0xFF;
}
```

- Attacker measures data-dependent victim execution time
- \Rightarrow Attacker learns bit b_i of secret

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 1

Attacker fills the cache with known pattern

Victim overwrites attacker data when *secret* is loaded into cache

```
void victim_code_v1() {
    secret[0] &= 0xFF;
}
```

- Attacker measures data-dependent victim execution time
- \Rightarrow Attacker learns bit b_i of secret
- Improved variant: Fill only the cache set where secret data resides

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 2

Attacker provides known pattern as input (e.g. chosen-plaintext)

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 2

• Victim overwrites the attacker data directly in the cache

```
void victim_code_v2(uint8_t *ptr) {
   for (unsigned int i = 0; i < SIZE; i++)
        ptr[i] ^= secret[i];
}</pre>
```


J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 2

• Victim overwrites the attacker data directly in the cache

```
void victim_code_v2(uint8_t *ptr) {
   for (unsigned int i = 0; i < SIZE; i++)
        ptr[i] ^= secret[i];
}</pre>
```

Attacker measures data-dependent victim execution time

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Variant 2

• Victim overwrites the attacker data directly in the cache

```
void victim_code_v2(uint8_t *ptr) {
   for (unsigned int i = 0; i < SIZE; i++)
        ptr[i] ^= secret[i];
}</pre>
```

Attacker measures data-dependent victim execution time

• \Rightarrow Attacker learns bit b_i of secret

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Outline

Background and Related Work

Discussion and Conclusion

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Array Level Timings

Technology	Pof	Array-level timing (from NVSim)	
reciniology	nei.	$t_{fs} \ (1 ightarrow 0)$	t_{ss} (0 $ ightarrow$ 1)
STT-MRAM (1)	[1,2]	\sim 6.3 ns (7 cycles)	${\sim}7.6$ ns (8 cycles)
STT-MRAM (2)	[3]	${\sim}$ 4.5 ns (5 cycles)	\sim 9.1 ns (10 cycles)
PCM	[4]	${\sim}50.5$ ns (51 cycles)	\sim 100.5 ns (101 cycles)
ReRAM	[5]	${\sim}$ 25.5 ns (26 cycles)	\sim 125.5 ns (126 cycles)

• Cycles reported for a 1 GHz clock (as simulated in gem5)

• t_{ns} (0 \rightarrow 0 and 1 \rightarrow 1) is one clock cycle for all technologies

⁴Fong et al., "Phase-Change Memory—Towards a Storage-Class Memory", TED 2017

⁵Chen et al., "A 16Mb dual-mode ReRAM macro with sub-14ns computing-in-memory and memory functions...", IEDM 2017

¹ Dong et al., "A 1Mb 28nm STT-MRAM with 2.8ns read access time at 1.2V VDD ...", ISSCC 2018

²Sato et al., "14ns write speed 128Mb density Embedded STT-MRAM with endurance > 10¹⁰ and 10yrs retention...", IEDM 2018

³Bishnoi et al., "Avoiding unnecessary write operations in STT-MRAM for low power implementation", ISQED 2014

Data Leakage through
Self-Terminated Write
Schemes in Memristive
Caches

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Attack Byte-Transfer Rates

	Attack transfer rates (kB/s)			
Technology/ISA	Variant 1 (L1 write miss)		Variant 2	
	cache fill	set fill	(L1 write hit)	
Syscall Emulation Mode				
STT-MRAM(1)/x86	0.050	17.5	18.8	
STT-MRAM(2)/x86	0.049	17.0	18.3	
PCM/x86	0.022	7.4	6.8	
ReRAM/x86	0.019	6.6	6.1	
Full System Mode				
STT-MRAM(1)/x86	0.048	\times^{\star}	2.0	
STT-MRAM(1)/ARM	\times^{\star}	\times^{\star}	2.8	

* No conclusive results were acquired, but more effort could lead to a successful attack.

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Outline

Background and Related Work

Results

Discussion and Conclusion

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Attack depends on high-resolution timing measurement
 - \Rightarrow Statistical methods if not available

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Attack depends on high-resolution timing measurement
 - \Rightarrow Statistical methods if not available
- Attack Variant 2 possible in systems without cache

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Attack depends on high-resolution timing measurement
 Statistical methods if not available
- Attack Variant 2 possible in systems without cache
- Self-terminated write can be disabled as a countermeasure

Benchmark	Self-terminated write		Performance
	enabled	disabled	loss
blackscholes	0.277 <i>s</i>	0.282 <i>s</i>	pprox 1.8%
bodytrack	1.388 <i>s</i>	1.424 <i>s</i>	pprox 2.6%
canneal	1.448 <i>s</i>	1.493 <i>s</i>	pprox 0.3%
dedup	4.600 <i>s</i>	5.071 <i>s</i>	pprox 10.2%

¹Sayed et al., "Opportunistic write for fast and reliable STT-MRAM", DATE 2017

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Discussion

- Attack depends on high-resolution timing measurement
 Statistical methods if not available
- Attack Variant 2 possible in systems without cache
- Self-terminated write can be disabled as a countermeasure

Benchmark	Self-terminated write		Performance
	enabled	disabled	loss
blackscholes	0.277 <i>s</i>	0.282 <i>s</i>	pprox 1.8%
bodytrack	1.388 <i>s</i>	1.424 <i>s</i>	pprox 2.6%
canneal	1.448 <i>s</i>	1.493 <i>s</i>	pprox 0.3%
dedup	4.600 <i>s</i>	5.071 <i>s</i>	pprox 10.2%

Alternatively: More agressive (but balanced) write time optimization¹

¹Sayed et al., "Opportunistic write for fast and reliable STT-MRAM", DATE 2017

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Attack depends on high-resolution timing measurement
 Statistical methods if not available
- Attack Variant 2 possible in systems without cache
- Self-terminated write can be disabled as a countermeasure

Benchmark	Self-terminated write		Performance
	enabled	disabled	loss
blackscholes	0.277 <i>s</i>	0.282 <i>s</i>	pprox 1.8%
bodytrack	1.388 <i>s</i>	1.424 <i>s</i>	pprox 2.6%
canneal	1.448 <i>s</i>	1.493 <i>s</i>	pprox 0.3%
dedup	4.600 <i>s</i>	5.071 <i>s</i>	pprox 10.2%

- Alternatively: More agressive (but balanced) write time optimization¹
- Asymmetric power is still an issue against power side-channel attacks (but those are much harder to exploit remotely)

¹Sayed et al., "Opportunistic write for fast and reliable STT-MRAM", DATE 2017

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Conclusion

Memristive memories soon to be adopted in many devices

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Memristive memories soon to be adopted in many devices
- Self-terminating write schemes proposed for energy/performance

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Memristive memories soon to be adopted in many devices
- Self-terminating write schemes proposed for energy/performance
- We showed a security flaw introduced by self-terminating write

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Memristive memories soon to be adopted in many devices
- Self-terminating write schemes proposed for energy/performance
- We showed a security flaw introduced by self-terminating write
- Attackers can read secret data at up to 20 kB/s

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

- Self-terminating write schemes proposed for energy/performance
- We showed a security flaw introduced by self-terminating write
- Attackers can read secret data at up to 20 kB/s
- $\blacksquare \Rightarrow$ Keep security in mind when optimizing performance/power!

J. Krautter, M. Mayahinia, D. Gnad, M. Tahoori

Thank you for your attention!

Questions? Write us an email!

{jonas.krautter,mahta.mayahinia,dennis.gnad,mehdi.tahoori}@kit.edu