

On the Viability of Decision Trees for Learning Models of Systems

Swantje Plambeck, Lutz Schammer, and Görschwin Fey

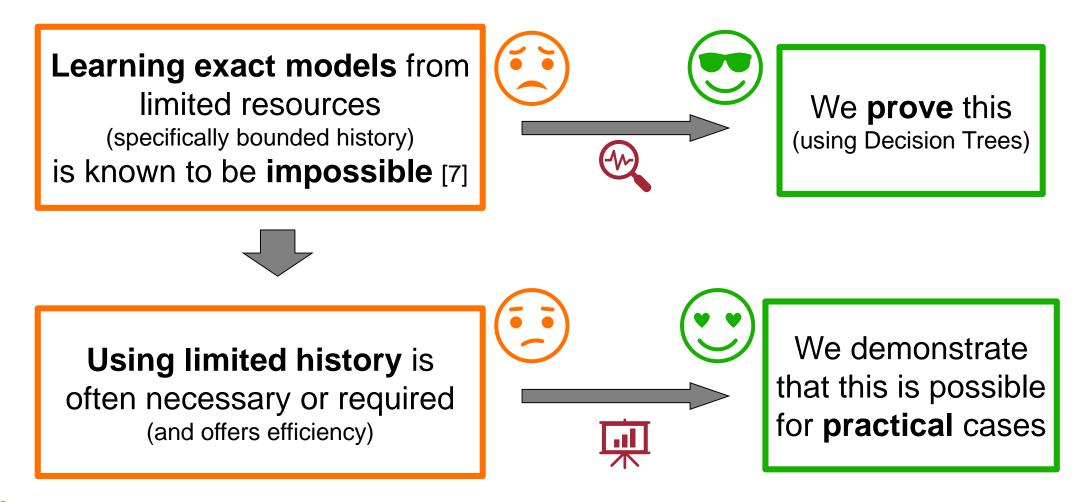
Hamburg University of Technology

Outline

- 1. Motivation
- 2. Basics (Automata & Decision Trees)
- 3. Representing Mealy Machines in Decision Trees
- 4. Limitations for Exact Learning
- 5. Practical Assessment
- 6. Experimental Results
- 7. Conclusion

Motivation

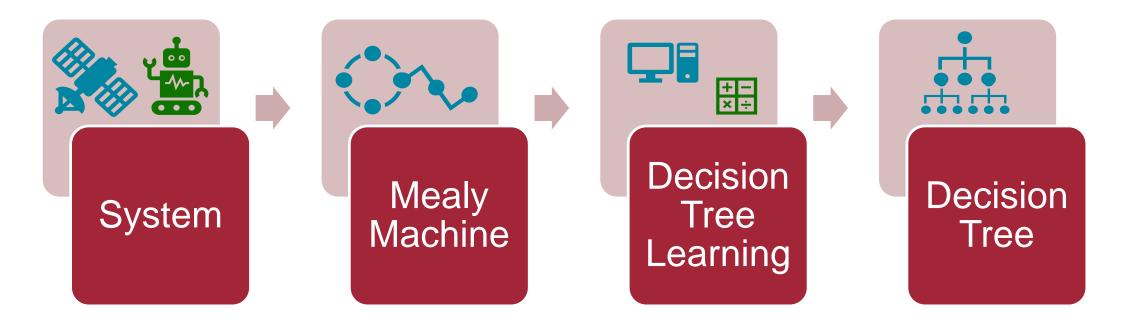
• Abstract models are useful for many applications like Monitoring, Testing, Simulation, etc.



Motivation

• Goal:

Find a decision tree representation of systems that can be modelled as a Mealy machine.



Motivation

• Goal:

Find a decision tree representation of systems that can be modelled as a Mealy machine.

- Why do we do this?
 - Decision trees and decision tree learning have been applied in many scenarios already
 - Decision tree learning is efficient
 - Decision trees interpretable and assumingly more flexible
- We determine whether a perfect reconstruction as a decision tree is possible
- If no perfect reconstruction is possible: what do we lose?

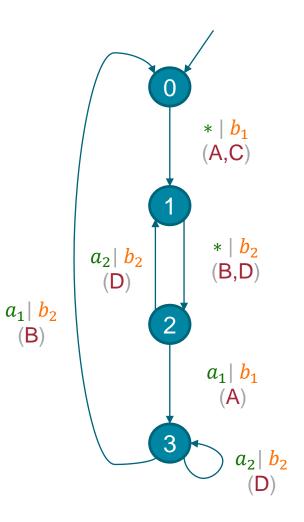
Basics – Automata and Decision Trees

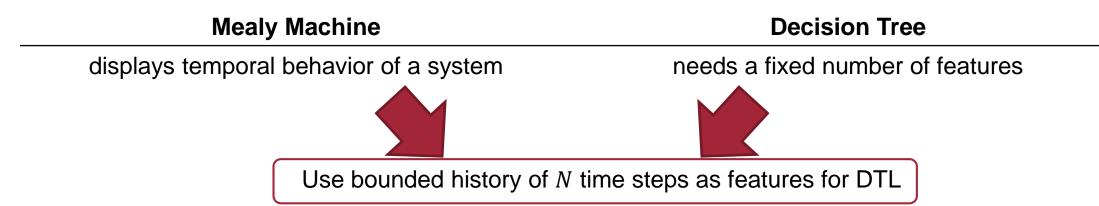
Mealy machines

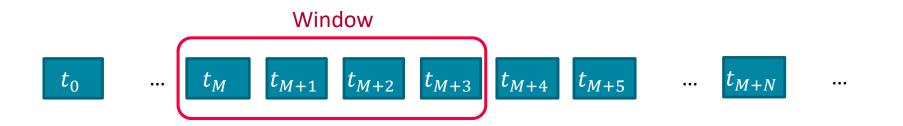
- Well-established exact approach: automata learning [1,8]
 - often infeasible
 - limited potential for approximations
- We consider observation of bounded history
 - Knowledge about initial state not needed

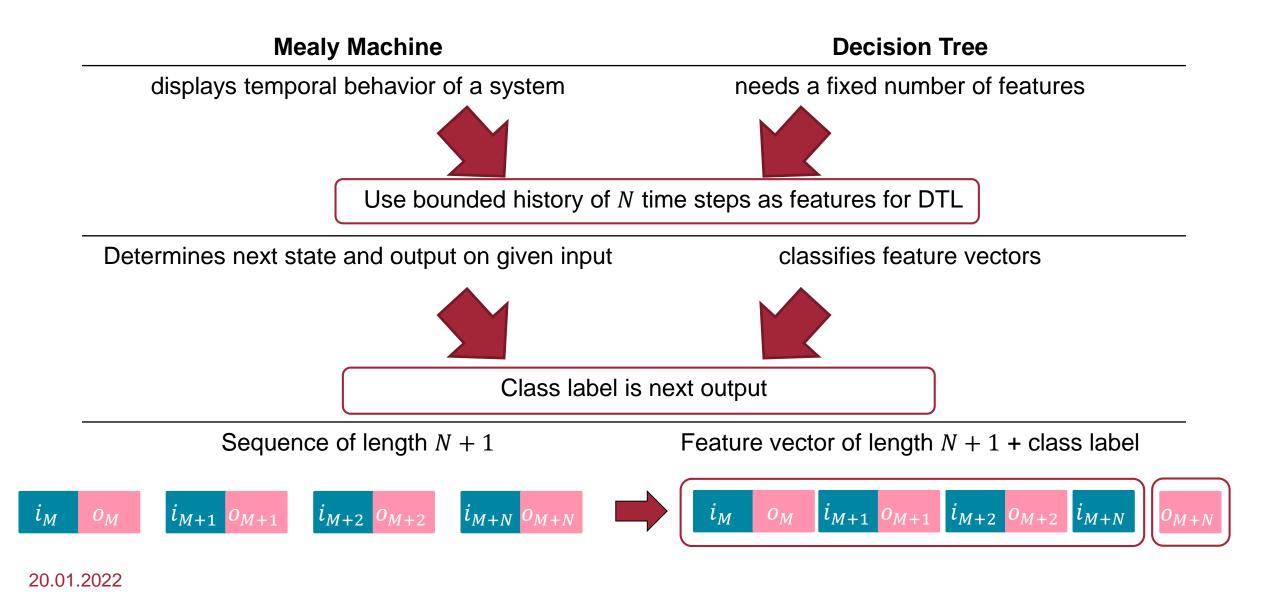
Decision trees [3,4]

- Decision trees represent a classification function
- Decision tree learning (DTL) requires a set of labelled feature vectors









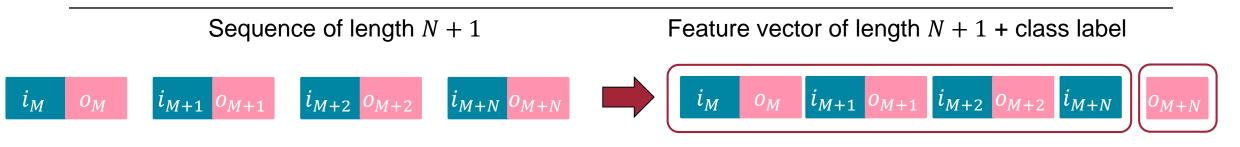
Mealy Machine

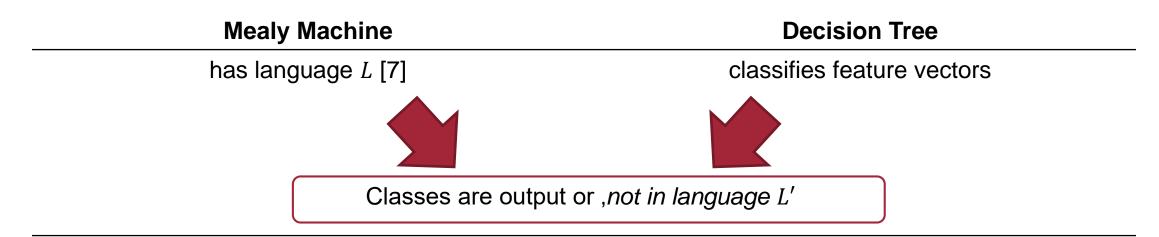
Decision Tree

Is this an exact mapping?

If not, why?

In which cases could it be exact?





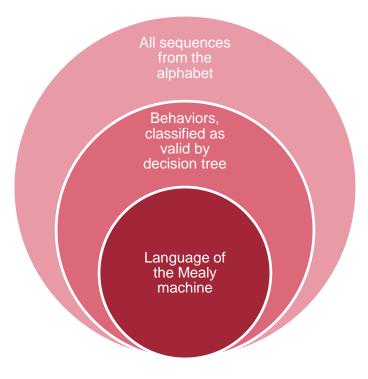
Mapping:

- 1. Consider all sequences of length N + 1 from the alphabet of the Mealy machine
- 2. Create a feature vector for each sequence
- 3. Label those sequences, which exist in the Mealy machine with their next output
- 4. Label those sequences, which are not conform with the Mealy machine's language with ,invalid'

Limitations for Exact Learning

Theorem:

When learning a decision tree from all observations, then the learned representation overapproximates the original Mealy machine.

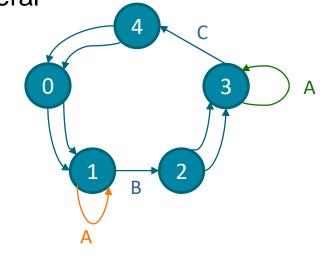


Limitations for Exact Learning

Theorem:

When learning a decision tree from all observations, then the learned representation overapproximates the original Mealy machine.

- Full equivalence of the two representations is not possible in general
- Counterexample:
 - Bounded history eventually not sufficient to identify the system's state definitely
 - Orientation in the automaton is lost due to limited history



Limitations for Exact Learning

Theorem:

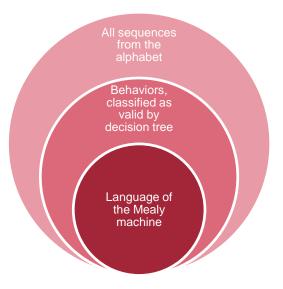
When learning a decision tree from all observations, then the learned representation overapproximates the original Mealy machine.

- Argumentation is independent of decision trees
 - > No guarantee for exact abstraction with limited history in general cases
- Limited history is successfully used in many practical applications
 - > Why is this still possible in practice?

Practical Assessment

Approaches to overcome the described problem:

- 1. Limitations to the set of sequences on which equivalence holds
 - Only sequences of length N, starting in the initial state
 - Only loop-free sequences
 - Only sequences where each loop is taken at most *K* times where *K* is a finite integer
- 2. Restrictions to the system under learning
 - Any state is uniquely identified by an observation of bounded history
 - > no subsequence of length *N* precedes two or more different states in the system
 - different modes of operation where looping behaviour occurs have unique input-output sequences
- Despite theoretical limitations, decision tree learning decision tree learning is a useful approach achieving good results in several applications

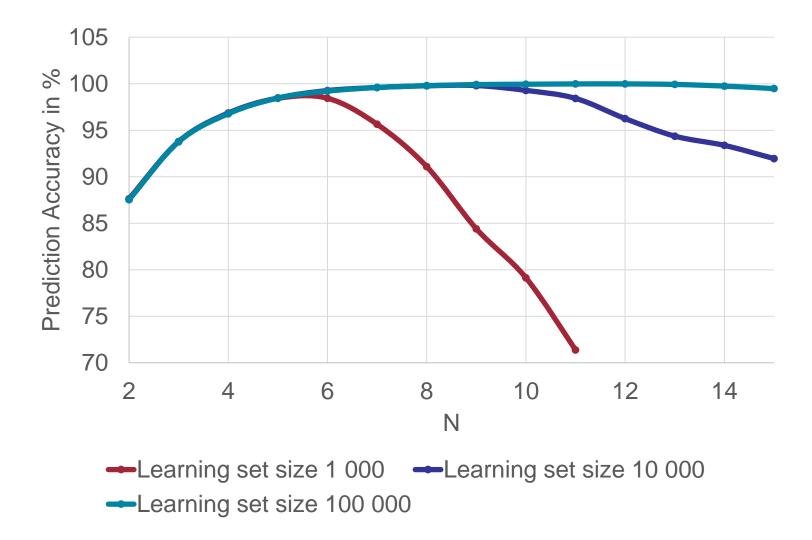


Experimental Results – Language Identification [5,6]

Example	Window Width <i>N</i>		arning sequences # all sequences	True Positives (%)	False Negatives (%)	True Negatives (%)	False Positives (%)	
Simple Example	3		1.00	100) 0	93		7
Simple Example	5	Ļ	1.00	100	0	99		1
Critical Example	1		1.00	100	0	92		8
Critical Example	5	Ļ	1.00	100	0	≈100	✓	<0
Y86 CPU [2]	3		<0.001	100	0	97		3
Y86 CPU [2]	5 🤸	-	<0.001	100	0	100	$\mathbf{+}$	0
Coffee Machine [1]	5		0.013	98	2	99		1
Generic (20 states, 14 symbols)	20		<0.001	97	3	100		0
Generic (100 states, 4 symbols)	5		0.898	100	0	0		100
Generic (100 states, 4 symbols)	10 🗸	Ļ	0.069	100	0	100	↓	0

- Many sequences used for learning \rightarrow no false negatives
- For less observations \rightarrow false negatives occur
- Increasing window width → better classification (larger number of true negatives)

Experimental Results – Prediction Accuracy [5,6]



- The prediction accuracy increases when more history is considered
- For very large *N* the prediction
 accuracy decreases again,
 because the number of
 considered sequences with
 respect to all possible sequences
 decreases
- This happens earlier, the smaller the learning set size

Conclusion & Outlook

- Decision trees successfully model practical systems
- Restrictions to language or systems ensure exact models with decision trees
- Theoretical results also hold for other learners with bounded history
- Decision trees can serve to predict an upcoming output

- Decision trees allow for learning of approximate models
- Specification of errors from bounded history or limited observations with decision trees

References

- [1] M. Merten, "Active automata learning for real life applications," Ph.D. dissertation, 01 2013.
- [2] R. E. Bryant, Computer systems: a programmer's perspective, D. R. O'Hallaron, Ed. Upper Saddle River, NJ u.a.: Prentice-Hall, 2003.
- [3] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification And Regression Trees. Wadsworth: Belmont, 1984.
- [4] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014.
- [5] M. Isberner, F. Howar, and B. Steffen, "The open-source learnlib," in Computer Aided Verification, D. Kroening and C. S. Păsăreanu, Eds. Cham: Springer International Publishing, 2015, pp. 487– 495.
- [6] MATLAB, (R2020b). Natick, Massachusetts: The MathWorks Inc., 2020.
- [7] E. M. Gold, "Language identification in the limit," Information and Control, vol. 10, no. 5, pp. 447 474, 1967.
- [8] D. Angluin, "Learning regular sets from queries and counterexamples," Information and Computation, vol. 75, no. 2, pp. 87 106, 1987.