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Outline
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ReRAM-based In-Memory Computing for NN Inference

Reduce data movement via weight stationary computation

High degree of parallel computation

} Crossbar operation  
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Architecture of ReRAM-based NN Accelerators

[ISCA’16] ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars 

} Aggregate multiple crossbars to form a hierarchical spatial 
architecture
n Enable high computation parallelism degree with lots of hardware 

computing unit



} OU-based operation
n Limited wordlines and bitlines could operate at a time (Operation Unit)
n Effect

} Originally, one crossbar operation parallelly executes all weights 
stored in a crossbar. With considering the imperfect circuit and device, 
it requires multiple sequentially executed OU-based operations to 
complete the computation equivalent to one crossbar operation.
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The Imperfect Circuit and Device

[ICCAD’18] DL-RSIM: a simulation framework to enable reliable ReRAM-based accelerators for deep learning

OU-based operations



} non OU-based partitioning vs OU-based partitioning
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Impact of OU-based Operation



} non OU-based partitioning vs OU-based partitioning
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Impact of OU-based Operation

It’s a trade-off between computation parallelism and resource 
utilization as well as communication overhead



} There are two steps in the weight deployment 
strategies to optimize execution time
n Partition weights to fit in crossbar size
n Replicate partitioned weights to utilize unused crossbars

} ISAAC [1] proposed that the number of replicates is 
proportional to the throughput of layers.

} HitM [2] proposed a dynamic-programming method to 
decide the number of replicates for all layers.
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Limitation on Previous Work
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The computation parallelism opportunity is not fully exploited.

1. [ISCA’16] ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars 
2. [ICCAD’20] HitM: High-Throughput ReRAM-based PIM for Multi-Modal Neural Networks 

Limitation on Previous Work



} The design space for the deployment of CNN 
inference on ReRAM-based accelerator can be 
divided into two parts: 
n The spatial deployment copes with the mapping of 

weight values and multiplication results onto crossbar 
cells. In our studied problem, one crossbar cell stores one 
weight value and generates one multiplication result. 

n The temporal deployment deals with the execution order 
of MVMs. In our studied problem, MVMs are partitioned 
into multiple parts on different crossbars, so the 
execution order should preserve the data dependencies 
between adjacent layers. 
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Design Space Exploration



} Three steps to decide the spatial deployment in 
our framework.
n Step 1. The partitioning step decides how to partition the 

MVMs and how many parts should be partitioned.
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Spatial Deployment



} Three steps to decide the spatial deployment in 
our framework.
n Step 2. The packing step decides how to pack partitioned 

MVMs onto virtual crossbars. 

n Step 3. The assigning step decides the assignment of 
virtual crossbars onto physical crossbars. 
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Spatial Deployment (cont.)
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} The Hardware components on the ReRAM-based 
CIM architecture follow the generated script to 
execute all MVM computations in a predefined 
order.
n The ordering step decides the MVM execution sequence 

to ensure that the precedence constraint imposed by the 
data dependencies between MVMs must be preserved. 
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Temporal Deployment



} Input: pretrained CNN model and PIM hardware 
configuration.

} Output: Scheduling strategy to drive the execution.
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SPATEM
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} Partitioning step
n Inference latency estimation model based on a partition 

strategy.
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Partitioning Step
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} Decide the partition 
strategy with the best 
inference latency.

} Dynamic-Programming 
Algorithm for Relaxed
Bounded Knapsack 
Problem
n Capacity: relaxed

available crossbars
n Bounded items: all layers’ 

partition dimensions
n Value of items: inference 

latency reduction
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Partitioning Step (cont.)



} Decide how to arrange virtual crossbars based on 
the partition degrees to meet resource limitation.

} Greedily try the partitioning strategies found by the 
previous step in inference latency ascending order.
n Greedy Worst-fit bin-packing algorithm

} Sequentially pack partitioned MVMs to the emptiest 
virtual crossbar.

} Virtual Crossbar: a set of computations that will be 
assigned to one unique physical crossbar.
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Packing Step



} Decide the assignment of virtual crossbars onto 
physical crossbars.

} Sequentially place the virtual crossbar with the 
most amount of shared data to physical crossbar 
in ascending order.
n Step 1 – merge virtual crossbars to virtual CUs
n Step 2 – merge virtual CUs to virtual PEs
n Step 3 – assign virtual PE to physical PE in ascending 

order of distance between physical PEs.
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Assigning Step



} Decide the MVM sequence.
} Arrange each layer’s MVM to fulfill data 

dependency as soon as possible.
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Ordering Step
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} We use an in-house event-driven simulator to estimate 
the inference latency of all scheduling strategies.

} CNN models: Lenet, DeepID, Deepface, Caffenet, 
Overfeat

} Hardware Configuration:
n 12 x 14 PEs, 12 CUs per PE, 8 128x128 Crossbars per CU.
n OU size: 9 x 8
n 1-bit DAC, 2-bit ReRAM cell

} Comparison objects
n To fairly evaluate our work, we implement ISAAC[1] and 

HitM[2] with adapting the throughput models to consider OU
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Experimental Setup

1. [ISCA’16] ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars 
2. [ICCAD’20] HitM: High-Throughput ReRAM-based PIM for Multi-Modal Neural Networks 



} Inference Latency
n SPATEM achieves 29.24% improvement in average. 
n In general, the larger the given CNN structure is, the 

lower the improvement is. 
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Evaluation Result
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} Computation parallelism
n SPATEM increases computation parallelism.
n Allowing storing weights of different layers in a single 

crossbar through the packing step significantly increases 
the computation parallelism since there are more 
effective crossbars to be allocated for computations of 
layers. 
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Evaluation Result (cont.)
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} Communication overhead
n SPATEM reduces communication overhead.
n We observe that the amount of data when executing 

Deepface has a different trend from other large CNNs. 
One explanation is that Deepface possesses a great 
number of neurons in fully connected layers, producing 
lots of intermediate data with partitioning weights. 
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Evaluation Result (cont.)
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} Resource utilization
n SPATEM utilizes more available resources.
n When the size of NNs is smaller like Lenet and DeepID, 

the improvement is not significant since the maximal 
parallelism degree is reached while leaving lots of unused 
crossbars. 
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Evaluation Result (cont.)
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} SPATEM shows that spatial and temporal issues 
must be overcome on OU-based ReRAM 
accelerators. Our framework decouples the design 
space into tractable steps, models the expected 
inference latency for partitioned MVMs, and 
addresses each step thoughtfully. 

} Comparing to the state-of-the-arts, we show that 
the derived scheduling strategy over five 
representative CNNs achieves 29.24% inference 
latency reduction on average, by utilizing 3.19x 
more originally unused crossbar cells with 31.28% 
less communication overhead. 
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Conclusion
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