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Background

• Deep neural networks (DNNs) have unlocked unprecedented 

breakthroughs among a wide range of real-world applications.
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Background: Need for Accurate Models

• User experience

• Property safety

• Safety-critical applications
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Autonomous drivingBiometric identificationVirtual reality Smart city



Background: Need for Accurate Models

How to design an accurate model?

• Architecture innovation

– Highly demanding for expertise!

– High search cost!

• Enlarging the size

– Easy to implement!

– Flexibility!
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[1] Bianco, Simone et al. “Benchmark Analysis of Representative Deep Neural Network Architectures.” IEEE Access 6 (2018): 64270-64277.



Background: Advances in AI Hardware

• New chip architecture

– ASIC, FPGA, GPU, TPU

– Efficient for DNNs

• Larger Memory

– GV100 – 32GB

– A100 – 80GB

• Higher memory bandwidth

– A100 – 1.94 TB/s
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[1] Reuther, Albert, et al. "Survey of machine learning accelerators." 2020 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2020.



Background: Advances in AI Hardware
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[1] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

AGX Xavier
32 TOPS

30 W
137 GB/s

ResNet-18 model
- Parameters: 11.68 M
- Memory access: 46.72 MB/image
- Computation: 1.74 GOPs/image 

13.66ms

• By fully utilizing the hardware, we can 
achieve higher accuracy without 
sacrificing the latency. 
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• Model scaling improves the model accuracy by increasing the model 

capacity or the quality of images.

Scaling Dimensions
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More channels

More layers

Larger images



• Single-dimension scaling

– Simple

– Limited improvement

• Compound scaling

– Higher accuracy

– More complicated

Scaling Dimensions
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Width Scaling

Compound Scaling

Depth Scaling

Resolution Scaling

>1%

[1] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning. PMLR, 2019.



• Objectives of compound scaling

– Higher accuracy

• Constraints of compound scaling

– FLOPs

– Latency

– Memory

Objectives and Constraints

2/22/2022 12



• The main goal of our scaling strategy is to maximize the accuracy under 

a given latency constraint ℒ and memory constraint ℳ.

Problem Formulation
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• Scaling all dimensions may not 

be the most efficient.

– Higher latency

– Larger design space

• W+R scaling 

– Good accuracy

– Smaller design space

– More efficient to hardware

Efficiency V.S. Accuracy
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Compound Scaling

[1] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning. PMLR, 2019.



• The resource allocation among different dimensions is formulated as a 

hyperparameter optimization problem.

Hardware-Aware Compound Scaling
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𝑑 = 1, 𝑟 = 𝑆
𝛼
, 𝑤 = 𝑆

1−𝛼
⚫ (𝑑, 𝑟, 𝑤): The scaling factors

⚫ 𝑆:The computation budget

⚫ 𝛼: The resource allocation hyperparameter

Obtained by random search



Content

1. Background

2. Hardware-Aware Compound Scaling

3. Importance-Aware Width Scaling

4. Experiments

5. Conclusion

2/22/2022 16



• Different layers in DNNs have different impact on the accuracy and 

inference latency.

Importance-Aware Width Scaling
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[1] Molchanov, Pavlo, et al. "Importance estimation for neural network pruning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

High latency !
Low accuracy !

Fig. 1: Baseline model

Hardware parallelism

Fig. 2: Uniform scaling



• We model the importance with the gradient from backpropagation.

– PROS:

• More accurate than L1-Norm or L2-Norm

• Can estimate the global importance

– CONS:

• Time-consuming training process

Importance Estimation
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[1] Molchanov, Pavlo, et al. "Importance estimation for neural network pruning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.



1. Sampling networks with different width 

configuration

2. Training the networks to get the 

gradients

3. Fitting the predictor with the gradients

Importance Predictor
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The formulation of the predictor:

𝐼𝑙 = 𝑎𝑙𝐶𝑙
𝑏𝑙



• The advantages of importance-

aware width scaling:

– Higher accuracy

– Less parameters

– Less time overhead

Importance-Aware Width Scaling
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Importance predictor

Add 10 channels 
to the layer



• Different layers in DNNs have different impact on the accuracy and 

inference latency.

Importance-Aware Width Scaling
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[1] Molchanov, Pavlo, et al. "Importance estimation for neural network pruning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

Fig. 1: Baseline model

High latency !
Low accuracy !

Hardware parallelism

Fig. 2: Uniform scaling Fig. 3: Importance-aware scaling
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Experiments: Settings
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Tight latency constraint Loose latency constraint

Autonomous driving Drones Network analysis Recommendation

• We test different scaling approaches under two application scenarios:



Experiments: ImageNet-1k
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• HACScale achieves higher accuracy under the same latency constraint.



Experiments: CIFAR-10
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• The superiority of HACScale also applies to other models and datasets.



Experiments: Analysis of Parameter Efficiency
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• With importance-aware width scaling, we achieve higher accuracy with less 
parameters.



Conclusion
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• We propose a new scaling method, HACScale

– Study the impact of different dimensions on accuracy and latency

– Propose to combine width scaling and resolution scaling

– Propose importance-aware width scaling

• Experimental results

– Higher accuracy

– Better parameter efficiency

– Better energy efficiency 



Thanks!
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