#### HACScale: Hardware-Aware Compound Scaling for Resource-Efficient DNNs

Hao Kong<sup>1,2</sup>, Di Liu<sup>1</sup>, Xiangzhong Luo<sup>2</sup>, Weichen Liu<sup>2</sup> and Ravi Subramaniam<sup>3</sup>

<sup>1</sup> HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore
 <sup>2</sup> School of Computer Science and Engineering, Nanyang Technological University, Singapore
 <sup>3</sup> Innovations and Experiences – Business Personal Systems, HP Inc., Palo Alto, California, USA



#### Content

- 1. Background
- 2. Hardware-Aware Compound Scaling
- 3. Importance-Aware Width Scaling
- 4. Experiments
- 5. Conclusion



#### Content

#### 1. Background

- 2. Hardware-Aware Compound Scaling
- 3. Importance-Aware Width Scaling
- 4. Experiments
- 5. Conclusion

#### Background

 Deep neural networks (DNNs) have unlocked unprecedented breakthroughs among a wide range of real-world applications.





Semantic Segmentation



Machine Translation



Image Classification



Question Answering



Object Detection



Speech Synthesis

2/22/2022

### **Background: Need for Accurate Models**

- User experience
- Property safety
- Safety-critical applications









Virtual reality

Smart city

Biometric identification

Autonomous driving







#### **Background: Need for Accurate Models**



How to design an accurate model?

- Architecture innovation
  - Highly demanding for expertise!
  - High search cost!
- Enlarging the size
  - Easy to implement!
  - Flexibility!

[1] Bianco, Simone et al. "Benchmark Analysis of Representative Deep Neural Network Architectures." IEEE Access 6 (2018): 64270-64277.

2/22/2022

# **Background: Advances in Al Hardware**

- New chip architecture
  - ASIC, FPGA, GPU, TPU
  - Efficient for DNNs
- Larger Memory
  - GV100–32GB
  - A100 80GB
- Higher memory bandwidth
  A100 1.94 TB/s



[1] Reuther, Albert, et al. "Survey of machine learning accelerators." 2020 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2020.

### **Background: Advances in Al Hardware**

#### ResNet-18 model

- Parameters: 11.68 M
- Memory access: 46.72 MB/image
- Computation: 1.74 GOPs/image



• By fully utilizing the hardware, we can achieve higher accuracy without sacrificing the latency.

TABLE I: Accuracy and latency of Wide-ResNet model with different width scaling on NVIDIA Jetson Xavier.

| Model       | Scaling factor | Accuracy(%) | Latency(ms) |
|-------------|----------------|-------------|-------------|
| Wide-ResNet | 1              | 88.09       | 5.5         |
|             | 2              | 92.71       | 5.58        |
|             | 4              | 94.19       | 5.58        |
|             |                |             |             |

[1] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



#### Content

#### 1. Background

#### 2. Hardware-Aware Compound Scaling

- 3. Importance-Aware Width Scaling
- 4. Experiments
- 5. Conclusion



# **Scaling Dimensions**

 Model scaling improves the model accuracy by increasing the model capacity or the quality of images.



# **Scaling Dimensions**

- Single-dimension scaling
  - Simple
  - Limited improvement
- Compound scaling
  - Higher accuracy
  - More complicated



[1] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning. PMLR, 2019.

2/22/2022

# **Objectives and Constraints**

- Objectives of compound scaling
  - Higher accuracy
- Constraints of compound scaling
  - FLOPs
  - Latency
  - Memory





#### **Problem Formulation**

 The main goal of our scaling strategy is to maximize the accuracy under a given latency constraint *L* and memory constraint *M*.

$$\begin{array}{ll} \max_{l,r,\Theta} & Accuracy(\mathcal{N}(d,r,\Theta)) \\ s.t. & \mathcal{N} = \bigodot_{i=1...n\cdot d} \mathcal{F}_i(X_{< r \cdot H_i, r \cdot W_i, w_i \cdot C_i >}) \\ & Latency(\mathcal{N}(d,r,\Theta)) \leq \mathcal{L} \\ & Memory(\mathcal{N}(d,r,\Theta)) \leq \mathcal{M} \end{array}$$

# **Efficiency V.S. Accuracy**



- Scaling all dimensions may not be the most efficient.
  - Higher latency
  - Larger design space
- W+R scaling
  - Good accuracy
  - Smaller design space
  - More efficient to hardware

14

[1] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning. PMLR, 2019.

2/22/2022

#### Hardware-Aware Compound Scaling

 The resource allocation among different dimensions is formulated as a hyperparameter optimization problem.

$$d = 1, r = \sqrt{S}^{\alpha}, w = \sqrt{S}^{1-\alpha}$$

- (d, r, w): The scaling factors
- *S*:The computation budget

•  $\alpha$ : The resource allocation hyperparameter

Obtained by random search



#### Content

- 1. Background
- 2. Hardware-Aware Compound Scaling
- 3. Importance-Aware Width Scaling
- 4. Experiments
- 5. Conclusion



# **Importance-Aware Width Scaling**

Different layers in DNNs have different impact on the accuracy and inference latency.





Fig. 1: Baseline model



Fig. 2: Uniform scaling

[1] Molchanov, Pavlo, et al. "Importance estimation for neural network pruning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.



#### **Importance Estimation**

- We model the importance with the gradient from backpropagation.
  - PROS:
    - More accurate than L1-Norm or L2-Norm
    - Can estimate the global importance
  - CONS:
    - Time-consuming training process

$$\mathcal{I}_{l} = (\mathbb{E}(K) - \mathbb{E}(K|k_{l} = 0))^{2}$$
$$\approx \sum_{m \in k_{l}} (\frac{\partial \mathcal{L}}{\partial m} \cdot m)^{2} = \sum_{m \in k_{l}} (g_{m} \cdot m)^{2}$$

[1] Molchanov, Pavlo, et al. "Importance estimation for neural network pruning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

#### **Importance Predictor**

The formulation of the predictor:

$$I_l = a_l C_l^{b_l}$$

- 1. Sampling networks with different width configuration
- 2. Training the networks to get the gradients
- 3. Fitting the predictor with the gradients





# **Importance-Aware Width Scaling**

- The advantages of importanceaware width scaling:
  - Higher accuracy
  - Less parameters
  - Less time overhead

Importance predictor

| Algorithm 1: Importance-aware width scaling                                                   |                                                                                 |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| <b>Require:</b> The importance prediction model of each layer                                 |                                                                                 |  |  |  |  |  |
| $\{\mathcal{I}_l = a_l \cdot C_l^{b_l}\}_{l=1}^n$ , the resolution scaling                    |                                                                                 |  |  |  |  |  |
| coefficient $r$ , the baseline width configuration                                            |                                                                                 |  |  |  |  |  |
| $\{C_l\}_{l=1}^n$ , the latency constraint $\mathcal{L}$ , and the memory                     |                                                                                 |  |  |  |  |  |
| constraint $\mathcal{M}$ .                                                                    |                                                                                 |  |  |  |  |  |
| Ensure : The width scaling coefficient of each layer                                          |                                                                                 |  |  |  |  |  |
| $\Theta = \{w_l\}_{l=1}^n$                                                                    |                                                                                 |  |  |  |  |  |
| 1 Initialize the network $\mathcal{N}$ with r and $\{C_l\}_{l=1}^n$ , the scaling             | Initialize the network $\mathcal{N}$ with r and $\{C_l\}_{l=1}^n$ , the scaling |  |  |  |  |  |
| stride $s = 10$ , and the width scaling coefficients                                          |                                                                                 |  |  |  |  |  |
| $\{w_l = 1\}_{l=1}^n;$                                                                        |                                                                                 |  |  |  |  |  |
| <b>2</b> for Each layer $l$ in the network $\mathcal{N}$ do                                   |                                                                                 |  |  |  |  |  |
| 3 Compute importance $\mathcal{I}_l = a_l \cdot C_l^{b_l}$ ;                                  |                                                                                 |  |  |  |  |  |
| 4 end                                                                                         |                                                                                 |  |  |  |  |  |
| 5 while $Latency(\mathcal{N}) \leq \mathcal{L}$ and $Memory(\mathcal{N}) \leq \mathcal{M}$ do |                                                                                 |  |  |  |  |  |
| 6 Find the most important layer $i = \operatorname{argmax} \mathcal{I}_l$ ;                   |                                                                                 |  |  |  |  |  |
| Add 10 c                                                                                      | hann                                                                            |  |  |  |  |  |
| 7 Update the scaling coefficient $w_i = \frac{C_i + v_i}{C_i} \cdot w_i$ ; to the lay         | /er                                                                             |  |  |  |  |  |
| 8 Update the layer width $C_i = C_i + s;$                                                     | '                                                                               |  |  |  |  |  |
| Update the importance $\mathcal{I}_i = a_i \cdot C_i^{b_i}$ ;                                 |                                                                                 |  |  |  |  |  |
| io end                                                                                        |                                                                                 |  |  |  |  |  |
| 11 return $\Theta = \{w_l\}_{l=1}^n$                                                          |                                                                                 |  |  |  |  |  |



# **Importance-Aware Width Scaling**

Different layers in DNNs have different impact on the accuracy and inference latency.

Hardware parallelism



Fig. 1: Baseline model



Fig. 2: Uniform scaling



Fig. 3: Importance-aware scaling

[1] Molchanov, Pavlo, et al. "Importance estimation for neural network pruning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

#### Content

- 1. Background
- 2. Hardware-Aware Compound Scaling
- 3. Importance-Aware Width Scaling

#### 4. Experiments

5. Summary

#### **Experiments: Settings**

• We test different scaling approaches under two application scenarios:

Tight latency constraint

Loose latency constraint



Autonomous driving



Drones





Recommendation



#### **Experiments: ImageNet-1k**

• HACScale achieves higher accuracy under the same latency constraint.

| Constraint        | Method               | Params (M) | Latency (ms) <sup>†</sup> | Power (W) | ↑ Utilization<br>(GFLOPS) | ↑ Power Efficiency<br>(GFLOPs/J) | ↑ Top1<br>(%) |
|-------------------|----------------------|------------|---------------------------|-----------|---------------------------|----------------------------------|---------------|
| ImageNet ResNet18 |                      |            |                           |           |                           |                                  |               |
|                   | Baseline [1]         | 11.68      | 13.66                     | 14.87     | 127.03 (1x)               | 8.54 (1x)                        | 70.56 (+0.0)  |
|                   | Zagoruyko et al. [6] | 16.33      | 13.87                     | 22.34     | 170.58 (1.34x)            | 7.64 (0.89x)                     | 72.24 (+1.68) |
| Tight             | Szegedy et al. [8]   | 11.68      | 13.48                     | 25.6      | 241.34 (1.9x)             | 9.43 (1.1x)                      | 71.12 (+0.56) |
|                   | NeuralScale [9]      | 12.74      | 16.73                     | 20.68     | 178.62 (1.41x)            | 8.64 (1.01x)                     | 72.37 (+1.81) |
|                   | HACScale (our)       | 12.96      | 13.74                     | 24.73     | 244.52 (1.92x)            | 9.89 (1.16x)                     | 72.97 (+2.41) |
|                   | Zagoruyko et al. [6] | 19.54      | 29.4                      | 29.87     | 99.8 (0.79x)              | 3.34 (0.39x)                     | 73.25 (+2.69) |
| Loose             | ResNet34 [1]         | 21.79      | 27.38                     | 18.54     | 131.02 (1.03x)            | 7.07 (0.83x)                     | 73.5 (+2.94)  |
|                   | Tan et al. [10]      | 18.74      | 31.12                     | 23.9      | 91.16 (0.72x)             | 3.81 (0.45x)                     | 73.57 (+3.01) |
|                   | Dollar et al. [11]   | 16.21      | 19.35                     | 21.27     | 144.09 (1.13x)            | 6.77 (0.79x)                     | 72.62 (+2.06) |
|                   | NeuralScale [9]      | 17.96      | 18.52                     | 29.3      | 215.1 (1.69x)             | 7.34 (0.85x)                     | 72.89 (+2.33) |
|                   | HACScale (our)       | 17.14      | 19.21                     | 33.21     | 250.54 (1.97x)            | 7.54 (0.88x)                     | 74.47 (+3.91) |

#### **Experiments: CIFAR-10**

• The superiority of HACScale also applies to other models and datasets.

| Constraint     | Method               | Params (M) | Latency (ms) <sup>†</sup> | Power (W) | ↑ Utilization<br>(GFLOPS) | ↑ Power Efficiency<br>(GFLOPs/J) | ↑ Top1<br>(%) |
|----------------|----------------------|------------|---------------------------|-----------|---------------------------|----------------------------------|---------------|
| CIFAR-10 VGG11 |                      |            |                           |           |                           |                                  |               |
|                | Baseline [12]        | 9.2        | 11.92                     | 7.62      | 12.58 (1x)                | 1.65 (1x)                        | 92.06 (+0.0)  |
|                | Zagoruyko et al. [6] | 20.76      | 12.88                     | 12.23     | 26.63 (2.12x)             | 2.18 (1.32x)                     | 92.72 (+0.66) |
| Tight          | VGG16 [12]           | 14.73      | 18.45                     | 9.14      | 17.02 (1.35x)             | 1.86 (1.13x)                     | 93.83 (+1.77) |
|                | Tan et al. [10]      | 16.28      | 15.37                     | 11.9      | 32.11 (2.55x)             | 2.69 (1.63x)                     | 92.88 (+0.82) |
|                | Dollar et al. [11]   | 17.07      | 13.25                     | 11.74     | 24.82 (1.97x)             | 2.11 (1.28x)                     | 92.69 (+0.63) |
|                | NeuralScale [9]      | 14.44      | 12.56                     | 11.94     | 48.15 (3.83x)             | 4.03 (2.44x)                     | 93.26 (+1.20) |
|                | HACScale (our)       | 12.24      | 12.7                      | 12.92     | 113.57 (9.03x)            | 8.79 (5.33x)                     | 94.29 (+2.23) |
|                | Zagoruyko et al. [6] | 36.89      | 28.63                     | 12.98     | 21.25 (1.68x)             | 1.63 (0.99x)                     | 92.98 (+0.92) |
| Loose          | VGG19 [12]           | 20.4       | 23.43                     | 10.61     | 17.03 (1.35x)             | 1.64 (0.99x)                     | 93.71 (+1.65) |
|                | Tan et al. [10]      | 21.2       | 24.98                     | 12.38     | 35.75 (2.84x)             | 2.89 (1.75x)                     | 94.27 (+2.21) |
|                | Dollar et al. [11]   | 29.74      | 24.58                     | 13.64     | 23.4 (1.86x)              | 1.7 (1.03x)                      | 92.78 (+0.72) |
|                | NeuralScale [9]      | 36.9       | 29.19                     | 13.98     | 48.58 (3.86x)             | 3.48 (2.11x)                     | 93.31 (+1.25) |
|                | HACScale (our)       | 21.1       | 25.5                      | 14.15     | 99.89 (7.94x)             | 7.06 (4.28x)                     | 94.38 (+2.32) |

### **Experiments: Analysis of Parameter Efficiency**

• With importance-aware width scaling, we achieve higher accuracy with less parameters.



Fig. 4. The parameter efficiency of different scaling methods. The baseline models for ImageNet and CIFAR-10 are ResNet18 and VGG11, respectively.

#### Conclusion

- We propose a new scaling method, HACScale
  - Study the impact of different dimensions on accuracy and latency
  - Propose to combine width scaling and resolution scaling
  - Propose importance-aware width scaling
- Experimental results
  - Higher accuracy
  - Better parameter efficiency
  - Better energy efficiency

# Thanks!



