

ASP-DAC 2022

Pearl: Towards Optimization of DNN-accelerators Via Closed-Form Analytical Representation

Authors: Arko Dutt, Suprojit Nandy, Mohamed Mostafa Sabry Aly

Widespread Deep Learning Applications

- Thanks to high accuracy of deep neural networks (DNN)
 - e.g. convolutional neural networks (CNN) for classification / object detection

Internet & Cloud

Autonomous Cars

Media & Entertainment

Medicines

Defense & Security

Big Market for Huge Demand

- Demand for deep learning → dedicated DNN chips
- Multibillion dollar market size

Mckinsey report, "Artificial-intelligence (AI) hardware: New opportunities for semiconductor companies," 2019

Dedicated Hardware for Deep Learning Application-Specific General Purpose CPU: Intel Xeon Phi **Custom Accelerator** Myriad 2 Nervana intel Movidius Eyeriss Cambricon Xeon Phi[™] Processor Cambricon 武 纪 科 **GPU:** NVIDIA Volta HWJ2016400 7N8G841.00 Google TPU Intel DLIA ©. NVIDIA O

Which Hardware (HW) is Most Efficient?

Solution

Current Modelling & Simulation Approaches

Runtime Decreases

Several minutes to hours/days

Cycle-accurate

- Shao et al. 2014
- Samajdar et al. 2018, 2020
- Binkert et al. 2011

Several milli-seconds

Machine Learning

- Reagen et al. 2017
- Venkatesan et al. 2019
- Dutt et al. 2019

Several micro to milli-seconds

Analytical

- Kwon et al. 2019
- Palit et al. 2019
- Sze et al. 2020
- Parashar et al. 2019
- Wu et al. 2019
- Samajdar et al. 2020

Similar Accuracy

Accuracy Increases

Objective

- Create analytical models to estimate performance/energy that are
 - extremely fast
 - highly-accurate comparable to cycle-accurate model
 - capable to be used in fast optimization methods

- Pearl analytical modelling
- Pearl simulation and evaluation

- Pearl use-case in accelerator design-space exploration
- Conclusion

Pearl Analytical Modelling

Key Messages

• *Pearl* attains < 1.3% average error versus cycle-accurate SOTA

• *Pearl* achieves > $10^7 \times$ average speedup over cycle-accurate SOTA

• Pearl enables fast methods to optimize DNN accelerators

SOTA: State-Of-The-Art

Fast & Accurate Analytical Model

DNN Workload (WL) Conv., Fully-Connected layer

HW Config params compute array, dataflow, on-chip & off-chip memory, interconnects, tech nodes **Closed-form Equation for**

Compute Utilization per DNN layer

Memory Accesses per DNN layer

Execution Time per DNN layer

Detailed Execution Time, Memory Bandwidth Needs, Active & Idle Energy

Execution Time of DNN Workload

$$T = \sum_{\{i=0\}}^{\{N-1\}} t_t(i)$$

 $t_t(i) = \alpha(i) \cdot \max\{t_c(i), t_m(i)\} + [1 - \alpha(i)] \cdot [t_c(i) + t_m(i)]$

A single DNN layer number 'i'

Number of (Conv + FC) layers in a DNN 'N'

Execution time per layer $t_t(i)$

Pipelining co-efficient per layer $\alpha(i) \in [0,1]$

Compute time per layer $t_c(i)$

Memory-access time per layer $t_m(i)$

Compute Time per DNN Layer

Acronym	Description
MACs(i)	Multiply-accumulate operations per layer
$\beta(i) \in (0,1]$	Compute array utilization rate per layer
f_{op}	Operating frequency
PE_H	Compute Array Height
PE_W	Compute Array Width

$$t_{c}(i) = \frac{MACs(i)}{\beta(i) \times f_{op} \times PE_{H} \times PE_{W}}$$

Compute Time per DNN Layer

- Model PE utilization rate $\beta(i)$ for different dataflow mapping
 - output-stationary (OS), weight-stationary (WS), input-stationary (IS)

$$t_{c}(i) = \frac{MACs(i)}{\beta(i) \times f_{op} \times PE_{H} \times PE_{W}}$$

Utilization Rate Formulation – $\beta(i)$

$$\beta(i) = \beta_{row}(i) \times \beta_{col}(i)$$

- β_{col} (*i*) is PE array column utilization rate for layer *i*
- β_{row} (*i*) is PE array row utilization rate for layer *i*

Case Study: Accelerator Architecture

Systolic Array Architecture

Dataflow in Systolic Array Architecture

Example Dataflow

Output-stationary (OS)

OS: Input Feature Map and Filter weights are streamed-in, while each pixel of Output Feature Map is fixed onto a given PE.

Illustrative Demonstration

Parameter	Value
Number of Filters (N_{Fil})	64
Input Activation $(IF_1 \times IF_2)$	112x112
PE Array Size ($PE_H \times PE_W$)	64 x 64
Global Buffer (SC)	128 KB
Filter Size ($F_1 \times F_2 \times Ch$)	7 x 7 x 3
Dataflow Mapping	OS

After Filter Size = 7x7x3 = 147 Clock Cycles

Utilization Rate for Different Dataflows

• Utilization rate $\beta(i)$ is modelled for OS, WS, IS dataflows

$$\beta(i) = \beta_{row}(i) \times \beta_{col}(i)$$

Column & row utilization rates are analytically modelled

different set of equations for each dataflow (details in paper)

Energy Consumption for DNN Layer

Total Energy Consumption

(details of energy models in paper)

Energy Breakdown & Pearl Capabilities

- Sensitivity analysis by varying parameters for 16x16 PE Array
 - Scratchpad size: {108kB, 3MB}
 - Off-chip main memory bandwidth: {1GB/s, 50GB/s}
 - Off-chip main memory leakage: {1mW, 1W}
 - Off-chip main memory access energy: {20pJ, 100pJ}

Energy Breakdown & Pearl Capabilities

16x16 PE Array

Scratch: Scratchpad Memory

Off-chip Main Memory Bandwidths: BW1 – 1GB/s, BW2 – 50GB/s

Pearl Evaluation

Accuracy: Pearl vs Cycle-accurate

- Cycle-accurate simulation baseline
 - Pearl versus SCALE-Sim*
 - assume sufficient scratchpad, i.e. $\alpha(i) = 1$

Dataflow	Workload & Hardware Configurations	Average Error (%)	
Mapping		DNN Execution Time	DNN Energy Consumption
OS	32	0.60	0.66
WS	(4 DNN, 2 Input Data, 4 Compute Arrays)	1.49	1.75
IS		0.87	1.34

* Samajdar et al., in arxiv 2018, ISPASS 2020

Pearl Simulation Speedup

- Average simulation time in *Pearl* (Python-based)
 - fraction of a milli-second for full-DNN workload

Baseline	Speedup		
Cycle-accurate*	> 10 ⁷ ×		
Analytical*	> 400×		

* Samajdar et al., in arxiv 2018, ISPASS 2020 * Kwon et al., in MICRO, 2019

Exploration and Optimization with Pearl

DNN System Consideration

- Main memoryoff-chip DRAM
- Dataflow mapping
 - output-stationary
- Architecture template
 systolic array

Apply a constraint: Accelerator Area

Split Area b/w PE, Buffers, Interconnects

Estimate DNN time and Energy

Select Optimum Solutions

*EDP means Energy-Delay-Product, a measure of energy-efficiency

Energy-efficient DNN Accelerators

- Target image classification
 - resolution Full HD
- Consider area constraint
 - 190 mm^2 (similar to TPU $256 \times 256 \text{ PE}$ array, 24MB SRAM)

DNN	PE Size		SRAM (KB)	
	Lower Bound	Upper Bound	Lower Bound	Upper Bound
Resnet101	275x275	296x296	13816	15296
Resnet152	275x275	334x334	10856	15296
Alexnet	394x394	423x423	2467	5428
VGG19	362x362	423x423	2467	8388

Conclusion

• *Pearl* attains < 1.3% average error versus cycle-accurate SOTA

• *Pearl* achieves > $10^7 \times$ average speedup over cycle-accurate SOTA

• Pearl enables fast methods to optimize DNN accelerators

SOTA: State-Of-The-Art

