

Chiplet Placement for 2.5D IC with Sequence Pair Based Tree and Thermal Consideration

Hong-Wen Chiou¹, Jia-Hao Jiang¹, Yu-Teng Chang¹, Yu-Min Lee², Chi-Wen Pan¹ January 17th, 2023

> ¹Institute of Communications Engineering,
> ²Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University

Outline

- Introduction
- The proposed framework
 - Placement with SP based tree
 - Post placement with thermal consideration
- Experimental results and summary

Introduction

Introduction (1/5) Motivation

While **"Moore's law"** approaches the physical limits...

2D ICs

2.5D ICs

"More than Moore":

2.5D ICs, 3D ICs...

Introduction (2/5) 2.5D ICs

Introduction (3/5) Thermal Issues on 2.5D ICs

When the chiplets are **placed together** for optimal wirelength...

When the chiplets are **placed consider thermal effects**...

Introduction (4/5) Related Works

- Heuristic algorithms
 - Hierarchical B*-tree with SA [Ho et al., DAC'13]
 - Placement with SA & thermal constraint [Coskun et al., TCAD'20]
 - TAP-2.5D with thermal consideration [Ma et al., DATE'21]
- Combinatorial search algorithms
 - EFA with sequence pair [Liu et al., DAC'14]
 - Tree with CSP representation [Osmolovskyi et al., ASPDAC'18]

SA: simulated annealing EFA: enumeration-based floorplanning algorithm CSP: constraint-satisfaction problem B&B: Branch-and-bound

Introduction (5/5) Motivation and Contributions

- Causes
 - Heuristic algorithms may obtain sub-optimal WL-driven chiplet placement
 - Few number of chiplets (≈10) is popular in recent industry design
 - Few number of chiplets can be placed with acceptable runtime by combinatorial search algorithms
- Contributions
 - Build more efficient chiplet placer by combinatorial search algorithms
 - Develop post placement considering thermal effects

The Proposed Framework

The Proposed Framework

Placement with SP Based Tree

Placement with SP Based Tree (1/11) Combinatorial Search Trees

Placement with SP Based Tree (2/11) SP-Tree

Example of SP-Tree for case w/ three chiplets

Complete SP w/ 3 chiplets: (312, 312) (312, 132) (312, 123) (132, 312) (132, 132) (132, 123) (123, 312) (123, 132) (123, 123)

Placement with SP Based Tree (3/11) Solution Space for *n* Chiplets

• CSP-Tree [ASPDAC'18]

- #complete placement: $4^n 4^{\frac{n(n-1)}{2}}$ (#rotation*#topology)

• SP-Tree (this work)

- #complete placement: $4^n(n!)^2$ (#rotation*#SP)

#chiplets	#Complete placement					
	CSP	SP				
1	4	4				
2	64	64				
3	4096	2304				
4	1048576	147456				
5	1073741824	14745600				
6	4.39805E+12	2123366400				
7	7.20576E+16	4.1618E+11				
8	4.72237E+21	1.06542E+14				
9	1.23794E+27	3.45196E+16				
10	1.29807E+33	1.38078E+19				
11	5.44452E+39	6.683E+21				

All the numbers of complete placement are without pruning any nodes in this page

Placement with SP Based Tree (4/11) Comparison on CSP-Tree and SP-Tree

• Issue 1: Similar placement with the same SP

Example 1:

- ① BA relation: B is at left of A
- ② CA relation: C is at right of A
- ③ CB relation: C is at right of B

Example 2:

- ① BA relation: B is at left of A
- ② CA relation: C is at right of A
- ③ CB relation: C is at above of B

(BAC, BAC)

Placement with SP Based Tree (5/11) Comparison on CSP-Tree and SP-Tree

- Issue 2: Illegal placement
 - All SP can be transformed to placement
 - Some CSP representation cannot be transformed to placement

Placement with SP Based Tree (6/11) Parallel Branch and Bound Approach

17/34

Placement with SP Based Tree (7/11) Estimated Wirelength [ASPDAC'18]

Forward wirelength checking (FC) & Terminal handling (TH)

Topological nodes:

- Place two dies optimally "backto-back" in all possible variations (rotations included)
- Calculate minimal WL of nets between the two dies

Rotational nodes:

- Align die (sitting alone) optimally to the interposer terminals
- Calculate minimal WL towards the terminals

Placement with SP Based Tree (8/11) Optimization w/ Whitespace

Placement with SP Based Tree (9/11) Analytical Optimization w/ Whitespace

ASPDAC'18 used step 1/2

Placement with SP Based Tree (10/11) Analytical Optimization w/ Whitespace

This work uses step 1/2 and the proposed step 3/4

Placement with SP Based Tree (11/11) An Example for SP-Tree

Currently best TWL = 36

Post Placement with Thermal Consideration

Post Placement with Thermal Consideration (1/4)

• Thermal simulation for 2.5D ICs

 $\mathbf{G}T = P$

G: thermal conductance, *T*: temperatures, *P*: power values

- Mesh size is set as 64 * 64 * 5 (the error is less than 1% compared to commercial tool Icepak)
- The heat transfer coefficient of top: 8700 W/m^2k
- The heat transfer coefficient of bottom: 2017 W/m^2k
- We solve *T* of chiplets directly using the matrix solver, SuperLU 5.3.0

Post Placement with Thermal Consideration (2/4)

- Post placement with thermal effects
 - One is moving only one chiplet at a time
 - The other is *moving all* chiplets together

Figure 6: Placement refinement. (a) The original placement, (b) Move one chiplet (C3), (c) Move all chiplets (C1-C4).

Post Placement with Thermal Consideration (3/4)

Move 1: Move Single Chiplet

- 1. Calculate allowable region
- 2. Move die1 in the region

Post Placement with Thermal Consideration (4/4)

Move 2: Move Whole Chiplets

1. Move the whole chiplets (without changing their relative positions)

Experimental Results and Summary

Experimental Results (1/5) Setup

- Programming with C/C++ language with compiler gcc 8.3.1
- Linux workstation with Intel CPU Xeon E5-2620 v4 at 2.10 GHz with #cores = 8
- Benchmark
 - Modified cases with #chiplets = 4, 6, 8 from
 [Liu et al., DAC'14] & [Osmolovskyi et al., ASPDAC'18]
 - Modified cases with #chiplets = 9, 10, 11 from MCNC benchmark & [Osmolovskyi et al., ASPDAC'18]

Experimental Results (2/5) Wirelength-Driven Placement Comparison

The optimized TWL of SP-CP is at most 1.035% better than [8]

[8] Sergii Osmolovskyi, Johann Knechtel, Igor L. Markov, Jens Lienig, Optimal Die Placement for Interposer-Based 3D ICs. Asia and South Pacific Design Automation Conference, pages 513-520, 2018. [ASPDAC'18]

Experimental Results (3/5) Wirelength-Driven Placement Comparison

The speedup of SP-CP at most 156X than [8]

[8] Sergii Osmolovskyi, Johann Knechtel, Igor L. Markov, Jens Lienig, Optimal Die Placement for Interposer-Based 3D ICs. Asia and South Pacific Design Automation Conference, pages 513-520, 2018. [ASPDAC'18]

Experimental Results (4/5) Placement with Thermal Consideration

Placement w/ SP-Tree

	V	w/ SP-Tr (SP-CP)	ee)				& post pla (SP-CP & I	cement Post-CP)		
		SP-CP			SP-CP & Post-CP					
Casa	TWL	Max. Temp.	Time	TWL	Max. Temp.	Time	Increasing TWL	Max. Temp. Re	duction	Runtime Overhead
Case	(m)	(°C)	(s)	(m)	(°C)	(s)	(%)	(°C)		(s)
apte_scaled30	0.40872	92.669	17.504	0.42707	84.455	75.605	4.490		8.214	58.101
apte_scaled25	0.40213	91.889	15.803	0.43193	84.979	87.846	7.411		6.910	72.043
apte_scaled20	0.39267	99.579	9.782	0.41887	94.562	83.610	6.672		5.017	73.828
apte_scaled15	0.41692	95.123	43.177	0.43818	91.556	88.489	5.099		3.567	45.312
xerox_scaled30	0.40664	88.631	149.792	0.42894	83.603	184.882	5.484		5.028	35.090
xerox_scaled25	0.42087	89.632	71.292	0.45233	84.673	187.037	7.475		4.959	115.745
xerox_scaled20	0.48135	87.810	192.405	0.50846	84.091	220.035	5.632		3.719	27.630
xerox_scaled15	0.51508	86.778	334.773	0.56097	84.918	344.944	8.909		1.860	10.171
hp_scaled30	0.16144	86.284	10.252	0.16362	84.773	23.564	1.350		1.511	13.312
hp_scaled25	0.19377	85.050	265.859	0.19617	84.584	320.769	1.239		0.466	54.910
Avg.	5.376								4.125	50.614

Satisfy thermal constraint 85 °C

Average runtime overhead: 50.614 seconds Average increasing TWL: 5.376%

Placement

Not satisfied thermal constraint but reduced 3~5 °C

Experimental Results (5/5) Placement with Thermal Consideration

Thermal Maps on case apte_scaled30

Optimal placement TWL = 0.40872m (+0.00%)maxT = $92.669 \degree C$ Sub-optimal placement TWL = 0.41076m (+0.49%)maxT = $90.308 \ ^{\circ}C$

Sub-optimal placement TWL = 0.42707m (+4.48%)maxT = $84.455 \degree$ C

Summary

- Innovation
 - Propose a novel combinatorial search tree, called SP-Tree
 - Build parallel B&B chiplet placement on SP-Tree
 - Develop post placement with thermal consideration
- Achievements
 - The placer can speed up with at most two order than priorart and reduce 1% TWL at most
 - The placer with thermal consideration can reduce the maximum temperature up to 8.214 °C with average 5.376% increasing TWL

Appendix

Preliminary Chiplet Ordering [ASPDAC'18]

• The order of chiplet addition can significantly affect the B&B process.

$$c_{i,j} = (w_i + h_i + w_j + h_j) / 2 \cdot n_{comm}$$

where $c_{i,j}$ is weight of the graph

Preliminary

Sequence Pair Representation

- Sequence pair uses two sequences to express the topological relationship between blocks (chiplets)..
 - H-constraint: $(\dots i \dots j \dots, \dots i \dots j \dots)$ iff *i* is left of *j*
 - V-constraint: $(\dots i \dots j \dots j \dots i \dots)$ iff j is below i

[14] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, "VLSI module placement based on rectangle-packing by the sequence-pair,"IEEE TCAD, vol. 15, no. 12, pp. 1518–1524, 1996

Wang, Laung-Terng, Yao-Wen Chang, and Kwang-Ting Tim Cheng, eds. *Electronic design automation: synthesis, verification, and test.* Morgan Kaufmann, 2009.

Preliminary

Branch and Bound Method for CSP-Tree

Branch Approach

- 1. Branch the tree start from root
- 2. Traverse the tree by depth first search
- 3. Assign rotations (North, South, East, West)
- 4. Assign **topology** for two adjacent chiplets (*Left, Right, Above, Below*)
- 5. Bound approach (next page, p. 10)
- 6. Back to 2. iteratively until all placement have been done

#Chiplets	#Complete placements
3	$4.096 * 10^3$
4	$1.048 * 10^6$
5	$1.073 * 10^9$
6	$4.398 * 10^{12}$

How to deal with **"trillions" of** complete placements efficiently?

Complete placement

Placement Information

- Terminologies
 - Chiplet: modules commonly designed beforehand

[1] Sergii Osmolovskyi, Johann Knechtel, Igor L. Markov, Jens Lienig, Optimal Die Placement for Interposer-Based 3D ICs. Asia and South Pacific Design Automation Conference, pages 513-520, 2018.

Problem Formulation

$$\min \sum_{k}^{\#nets} HPWL_k \tag{2}$$

subject to

$$\begin{aligned} x_{left,i} &\geq 0, W \geq x_{right,i}, \\ y_{bottom,i} &\geq 0, H \geq y_{top,i}. \\ min\{ \left| x_{left,i} - x_{right,j} \right|, \left| x_{left,j} - x_{right,i} \right|, \\ \left| y_{bottom,i} - y_{top,j} \right|, \left| y_{bottom,j} - y_{top,i} \right| \} \geq w_{space}. \end{aligned}$$
(3a)

$$cost = \phi * \frac{\text{TWL} - \text{TWL}^{opt}}{\text{TWL}^{max} - \text{TWL}^{opt}} + (1 - \phi) * \frac{T_{max} - T_{max}^{min}}{T_{max}^{max} - T_{max}^{min}}, \quad (4)$$

where TWL^{max} is the maximum TWL, and T_{max}^{max} and T_{max}^{min} are the maximum and minimum of maximum temperatures of the placements with increasing TWL < η %.

Placement with SP Based Tree (12/11) Analytical Optimization w/ Whitespace

- 1. Place chiplets toward to the left and lower corner with sequence pair as default (with HCG/VCG)
 - To check that fixed outlined (interposer size) constraint is satisfied
- 2. Analytical optimize the chiplets placement w/ whitespace

$$-\min\sum_{i=1}^{\#nets} \left(\sum_{j,k=1; \ j\neq k}^{\#pins} (x_j - x_k)^2 \right) + \sum_{i=1}^{\#nets} \left(\sum_{j,k=1; \ j\neq k}^{\#pins} (y_j - y_k)^2 \right),$$

subject to fixed outlined (interposer size) and space constraints

Placement with SP Based Tree (13/11) Pruning Dominated Nodes for SP-Tree

Pruned nodes which appear much worse than others at the same level in the SP-Tree
 Example of SP-Tree for

Example of SP-Tree for case w/ four chiplets

Placement with SP Based Tree (14/11) Pruning Dominated Nodes for SP-Tree

• Pruned nodes which appear much worse than others at the same level in the SP-Tree

After insert C3 in SP (12, 12)

Partial SP	best estimated HPWL	<i>α</i> [<i>i</i>]	γ[<i>i</i>]
(312, 312)			
(312, 132)		1+0=1	1-1/3=2/3
(312, 123)		1+1= <mark>2</mark>	1-2/3=1/3
(132, 312)		1+0=1	1-1/3=2/3
(132, 132)	(212, 212)	1+0=1	1-1/3=2/3
(132, 123)	vs (312, 312)	1+1=2	1-2/3=1/3
(123, 312)		1+1=2	1-2/3=1/3
(123, 132)		1+1=2	1-2/3=1/3
(123, 123)		1+1=2	1-2/3=1/3

Example:

 $\alpha[i]$ is difference between the partial SP at node *i* and the partial SP having the best estimated <u>HPWL</u> at the same level

- 1) (312, 312) and (312, 132) the topology of C3 and C1 is different. \Rightarrow this case contributes 1 to $\alpha[1]$.
- 2) (312, 312) and (312, 132) the topology of C3 and C2 is the same. \Rightarrow this case contributes 0 to $\alpha[1]$.

Then, we can get $\gamma[i] = 1 - (1+0)/3 = 2/3$

If $\alpha[i]$ (difference) \uparrow , $\gamma[i] \downarrow$, pruning criteria \downarrow

Placement with SP based tree (15/11) Pruning Dominated Nodes for SP-Tree

Algorithm 1 Modified coefficient γ on the same level of partial SP							
Input: integer array $[1, 2,, n^2]$ <i>IP</i> ₁ , <i>IP</i> ₂	Record the insertion positions of the chiplet inserted by two sequences						
float array $[1, 2,, n^2]$ TWL							
Output: float array $[1, 2,, n^2] \gamma$							
1: integer array $[1, 2,, n^2] \alpha$							
2: $IP_{1min} = \min(IP_1) ;$	Incontion position of the node with the minimum estimated UDWI						
3: $IP_{2min} = \min(IP_2) ;$	Insertion position of the node with the minimum estimated HP w L						
4: $n = n_k;$							
5: for each $i \in [1, n^2]$ do							
6: $IP_{gap}[i] = IP_1[i] - IP_2[i]$	Record the gap between the insertion positions of these two sequences						
7: $IP_{gap\ min} = IP_1\ min - IP_2\ min$							
8: $\alpha[i] = (IP_1[i] - IP_1_{min} + IP_2[i])$	$-IP_{2 \min}$ + $ IP_{gap}[i]$ - $\alpha[i]$ is half of the sum of differences						
IPgap min)/2;	insertion positions at the same level						
9: end for							
10: for each $i \in [1, n^2]$ do							
11: $\gamma[i] = 1 - \frac{\alpha[i]}{n_k};$							
12: end for							

Solution Space for *n* Chiplets

#chiplets	#leafs						
	CSP	SP					
1	4	4					
2	64	64					
3	4096	2304					
4	1048576	147456					
5	1073741824	14745600					
6	4.39805E+12	2123366400					
7	7.20576E+16	4.1618E+11					
8	4.72237E+21	1.06542E+14					
9	1.23794E+27	3.45196E+16					
10	1.29807E+33	1.38078E+19					
11	5.44452E+39	6.683E+21					
12	9.13439E+46	3.84941E+24					
13	6.12998E+54	2.6022E+27					
14	1.6455E+63	2.04012E+30					
15	1.76685E+72	1.83611E+33					
16	7.58855E+81	1.88018E+36					
17	1.3037E+92	2.17349E+39					
18	8.959E+102	2.81684E+42					
19	2.4626E+114	4.06751E+45					
20	2.7077E+126	6.50802E+48					

Post Placement with Thermal Consideration (5/4)

- 1) Calculate T max and its position of a given placement by using CTS
- 2) Define and calculate the thermal gain of each chiplet *i*, $g_i = \frac{T_{max,1}}{P_i}$, $i=1 \sim n$. P_i is the power of chiplet *i* and $T_{max} = \sum_{i=1}^n g_i P_i$
- 3) Partially differentiate $T_{max,d} = \sum_{i=1}^{n} g_i P_i / (d_i + \Delta d_i)$
- 4) Calculate the increasing HPWL per unit moving length of a chiplet *i* to be $\delta W_i = (|\cos \theta_i + \sin \theta_i|) * (#net_i)$
- 5) Calculate the thermal–wirelength product $\delta T_i/\delta W_i$ for each chiplet *i* and choose the chiplet *m* with the lowest value
- 6) Calculate $\Delta d_{m,max}$ to be $(T_{max} T_{threshold}) \div \frac{g_i P_i}{d_i}$
- 7) Move chiplet *m* away from the point of T_{max} with a suitable distance $\Delta d_m \leq \Delta d_{m,max}$
- 8) Renew the position and value of T_{max}

Post Placement with Thermal Consideration (6/4)

- 9) Move all chiplets simultaneously along the direction of interposer center from the position of T_{max} , and the displacement is r% of the distance between the position of T_{max} and the interposer center (the default value of r is 1).
- 10) Repeat the above steps iteratively until the temperature meets the thermal threshold, the chiplet cannot be moved,
- 11) If none of the placements with increasing TWL < η % is satisfied $T_{constrain}$, then choose the minimum cost from equation (4) of those placements

Wirelength-Driven Placement Comparison

					[8]			CP-SP-Tree			Comparison		
Case	Chiplete	Dine	Note	Terminals				w/ [8]'s PDC	w/ Sec. 5.2.3	TWL	w/ [8]'s PDC	w/ Sec. 5.2.3	
Case	Cilipiets	1 1115	INCLO	Terminais	TWL	Time	TWL	Time	Time	Diff.	Speedup	Speedup	
					(m)	(s)	(m)	(s)	(s)	(%)	(×)	(×)	
t4_s	4	15611	1808	789	10.87000	0.263	10.87000	0.127	0.123	0.000	2.071	2.138	
t4_m	4	91005	5326	1174	38.14000	0.577	38.14000	0.226	0.214	0.000	2.553	2.696	
t4_b	4	223781	12265	1033	58.92000	1.180	58.92000	0.411	0.396	0.000	2.871	2.980	
t6_s	6	20138	1720	639	9.01000	0.366	9.01000	0.122	0.098	0.000	3.000	4.572	
t6_m	6	121935	7123	1162	33.77000	1.791	33.77000	0.439	0.392	0.000	4.080	4.572	
t6_b	6	229228	14264	1192	62.71000	2.470	62.71000	0.945	0.886	0.000	2.614	2.788	
t8_s	8	18689	1918	882	23.51000	1.341	23.51000	0.192	0.165	0.000	6.984	8.127	
t8_m	8	159149	8391	1391	36.39000	2.058	36.39000	0.711	0.683	0.000	2.895	3.013	
t8_b	8	306057	12593	1049	66.61000	12.116	66.61000	1.094	0.933	0.000	11.075	12.986	
apte_scaled20	9	287	97	73	0.37701	17.620	0.37704	9.782	8.501	0.008	1.801	2.073	
apte_scaled15	9	287	97	73	0.37320	14.087	0.37265	9.559	8.457	-0.147	1.474	1.666	
apte_scaled10	9	287	97	73	0.36630	12.192	0.36551	9.430	6.963	-0.216	1.293	1.751	
apte_scaled5	9	287	97	73	0.37526	31.774	0.37526	6.299	5.270	0.000	5.044	6.029	
xerox_scaled20	10	698	203	2	0.36399	22881.822	0.36398	220.391	146.051	-0.003	103.824	156.670	
xerox_scaled15	10	698	203	2	0.37876	4634.995	0.37861	111.165	88.330	-0.040	41.695	52.474	
xerox_scaled10	10	698	203	2	0.41998	3685.743	0.41830	101.963	65.245	-0.400	36.148	56.491	
xerox_scaled5	10	698	203	2	0.43747	1853.318	0.43747	64.173	50.623	0.000	28.880	36.610	
hp_scaled20	11	309	83	45	0.14002	17.315	0.13992	10.044	9.524	-0.071	1.724	1.818	
hp_scaled15	11	309	83	45	0.14342	9.649	0.14194	2.851	2.580	-1.035	3.384	3.740	
hp_scaled10	11	309	83	45	0.14377	5.140	0.14295	1.729	1.641	-0.570	2.974	3.132	
hp_scaled5	11	309	83	45	0.16401	4718.180	0.16401	930.729	836.377	0.000	5.069	5.641	
apte	9	287	97	73	0.43751	1397.697	0.43751	323.930	186.660	0.000	4.315	7.488	
xerox	10	698	203	2	0.36587	>12hr	0.36430	34994.700	22187.000	-0.430	X	X	
hp	11	309	83	45	0.15026	14281.288	0.15014	438.440	348.699	-0.080	32.573	40.956	
Avg.										-0.124	13.406	18.242	

Table 1: Results on wirelength driven placement with $w_{space} = 0 \text{ mm}$

Placement with Thermal Consideration

		CP-SP-Tree			CP-SP-Tree +	Post CP			
Casa	TWL	Max. Temp.	Time	TWL	Max. Temp.	Time	Increasing TWL	Max. Temp. Reduction	Runtime Overhead
Case	(m)	(°C)	(s)	(m)	(°C)	(s)	(%)	(°C)	(s)
apte_scaled30	0.40872	92.669	17.504	0.42707	84.455	75.605	4.490	8.214	58.101
apte_scaled25	0.40213	91.889	15.803	0.43193	84.979	87.846	7.411	6.910	72.043
apte_scaled20	0.39267	99.579	9.782	0.41887	94.562	83.610	6.672	5.017	73.828
apte_scaled15	0.41692	95.123	43.177	0.43818	91.556	88.489	5.099	3.567	45.312
xerox_scaled30	0.40664	88.631	149.792	0.42894	83.603	184.882	5.484	5.028	35.090
xerox_scaled25	0.42087	89.632	71.292	0.45233	84.673	187.037	7.475	4.959	115.745
xerox_scaled20	0.48135	87.810	192.405	0.50846	84.091	220.035	5.632	3.719	27.630
xerox_scaled15	0.51508	86.778	334.773	0.56097	84.918	344.944	8.909	1.860	10.171
hp_scaled30	0.16144	86.284	10.252	0.16362	84.773	23.564	1.350	1.511	13.312
hp_scaled25	0.19377	85.050	265.859	0.19617	84.584	320.769	1.239	0.466	54.910
Avg.							5.376	4.125	50.614

Table 2: Results on placement with thermal consideration and $w_{space} = 0.1 \text{ mm}$

Thank You !