

Department of Electrical Engineering, National Central University Electronic Design Automation Laboratory (EDA LAB)

An On-line Aging Detection and Tolerance Framework for Improving Reliability of STT-MRAMs

Outline

- Introduction
- Preliminaries
- Proposed Framework
- Experimental Results

1

Conclusions

Outline

- Introduction
- Preliminaries
- Proposed Framework
- Experimental Results
- Conclusions

Introduction

- With the rapid development of AloT (Internet of Things), the market of smart device growing extremely fast in the past few years.
- However, downscaling CMOS memory technologies (SRAM and/or embedded DRAM) lead to increased leakage power.
- The investigation of next generation memory designs to replace CMOS memory technologies.
 - Phase change memory (PCM)
 - Spin-transfer-torque magnetic random-access memory (STT-MRAM)
 - Resistive random-access memory (ReRAM)

Introduction

- Among them, STT-MRAM is a promising candidate for on-chip memory
 - High density
 - Relative Fast speed
 - Nonvolatile
 - Negligible leakage power
 - Compatibility with CMOS process

Arrow A	Write 1
Arrow B	Write 0
Arrow C	Read

Operations	Write '1'('0')	Read	
WL	VDD	VDD	
BL	GND(VDD)	V_{read}	
SL	VDD(GND)	GND	

Operation conditions of STT-MRAM

Introduction

- There are various researchers have proposed different aging detection and tolerance techniques.
 - [4] proposed a design-for-testability (DFT) scheme to monitor the electrical parameter deviations over time.
 - [15] proposed a self-activated build-in self-test (BIST) and build-in self-repair (BISR) engine to detect and tolerate the aging failure of an MTJ.

[4] G. Radhakrishnan, Y. Yoon and M. Sachdev, "Monitoring Aging Defects in STT-MRAMs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4645-4656, Dec. 2020

[15] Y. Zhou, H. Cai, M. Zhang, L.A.B. Naviner, J. Yang, A novel BIST for monitoring aging/temperature by self-triggered scheme to improve the reliability of STT-MRAM, Microelectronics Reliability, Volume 114, 2020, 113735, ISSN 0026-2714.

Contributions

- We propose a novel on-line aging detection and tolerance framework for improving reliability of STT-MRAMs.
- In our aging detection mechanism, we define four health levels of an MTJ and perform early aging detection to identify aged rows before they are breakdown.
- We compensate the aging-induced resistance drop of the aged words by a welldesigned reference resistance generator to ensure the correctness of the reading results.
- Simulation results show that our framework can successfully detect 99% aging word under process variation and can achieve at most 25% reliability improvement of STT-MRAMs.

Outline

- Introduction
- Preliminaries
 - STT-MRAM Basics
 - Aging Effect on MTJ
 - MTJ Defect Model
- Proposed Framework
- Experiment Results
- Conclusions

STT-MRAM Basics

- Magnetic tunnel junction (MTJ) basics:
 - MTJ is the core of STT-MRAM
 - MTJ has two states due to TMR (Tunnel Magneto-Resistance) effect:
 - AP (Anti-Parallel) is high resistance and represents as logic 1
 - P (Parallel) is low resistance and represents as logic 0
 - TMR ratio is defined: $TMR = \frac{(R_{AP} R_{P})}{R}$
 - Resistance-area (RA) product show the resistance property of layer materials in MTJ devices

Aging Effect of MTJ

• Time-dependent dielectric breakdown (TDDB) is considered as one of the most prominent aging mechanism in MTJ devices.

MTJ Defect Model

- The pinhole defect degrades both TMR and RA of MTJ.
 - Cause resistance degradation.
- The defective TMR and RA of defective MTJ can be calculated by the equations below [11].

$$RA_{\rm eff}(A_{\rm ph}) = \frac{A_0}{\frac{A_0(1 - A_{\rm ph})}{RA_{\rm df}} + \frac{A_0 \cdot A_{\rm ph}}{RA_{\rm bd}}}$$

$$TMR_{\rm eff}(A_{\rm ph}) = TMR_{\rm df} \cdot \frac{RA_{\rm eff}(A_{\rm ph}) - RA_{\rm bd}}{RA_{\rm df} - RA_{\rm bd}}$$

[11] L. Wu et al., "Pinhole Defect Characterization and Fault Modeling for STT-MRAM Testing," 2019 IEEE European Test Symposium (ETS), 2019, pp. 1-6.

Outline

- Introduction
- Preliminaries
- Proposed Framework
 - Aging Detection Mechanism
 - Aging Tolerance Mechanism
 - Look-up Table Design
- Experiment Results
- Conclusions

Problem Formulation

- In this paper, we majorly focus on the TDDB-induced pinhole defects on MTJ, and assume peripherical circuits are ideal to reduce the problem complexity.
- Here we formally formulate the problem we address in this paper as follows:
 - Given a STT-MRAMs and the number of bits in a word.
 - We want to develop an on-line aging detection circuit and an on-line aging tolerance circuit can identify TDDB-induced aging word and read the aged word correctly.
 - Our development should not cause significant performance loss and large area overhead.

Proposed Framework

• The main concept of our framework.

Proposed Framework

• The flow chart of our framework.

Proposed Framework

• The architecture diagram of our framework.

Aging Detection Mechanism

• The degradation of R_{AP_AGED} is more serious than R_{P_AGED} .

Health level of MTJ.	Relations of R_{AP_AGED} and R_{REF_0} .	Rf. Adjustment
Nominal .	$\mathrm{R}_{\mathrm{REF}_0} < R_{AP_AGED}$	No Adjust .
Weak aging .	$\frac{2}{3} \cdot \mathbf{R}_{\mathrm{REF}_0} < R_{AP_AGED} < \mathbf{R}_{\mathrm{REF}_0} < \mathbf{R}_{\mathrm{REF}_0}$	$\frac{2}{3}$ · R _{REF_0} ~
Strong aging .	$\frac{1}{2} \cdot \mathbf{R}_{\mathrm{REF}_{0}} < R_{AP_AGED} < \frac{2}{3} \cdot \mathbf{R}_{\mathrm{REF}_{0}}$	$\frac{1}{2}$ ·R _{REF_0} ~
Breakdown .	$R_{AP_AGED} < rac{1}{2} \cdot \mathrm{R}_{\mathrm{REF}_0}$	X .

Table I Definition of health level of MTJ and reference adjustment range.

Aging Detection Mechanism

• The schematic circuit diagram of aging detection circuit.

Aging Tolerance Mechanism

• The schematic circuit diagram of current mirror-based sense amplifier [14] and the modified reference generator.

[12] S. Jain, A. Ranjan, K. Roy and A. Raghunathan, "Computing in Memory With Spin-Transfer Torque Magnetic RAM," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 470-483, March 2018.

Look-up Table Design

- Our LUT consists of three fields: Valid bit, Address, and W/S.
 - Valid bit indicates whether the corresponding row in the LUT stores information of an aged word.
 - Address represents the row and column information for the aged word.
 - W/S bit is used to indicate the health level of aged word.
 - Weak: W/S = 0.
 - Strong: W/S = 1. Table III An example of LUT that only contains 1 weak-aged word.

Row	Valid.	Address.	W/S .
≎، 0	1 @	Addr1 -	0.0
1 🕫	0 *3	Don't care (X).	0.0
2.0	نې 0	Don't care (X).	
	••••	• • • 42	•••*

Outline

- Introduction
- Preliminaries
- Proposed Framework
- Experimental Results
 - Aging Detection Mechanism Validation
 - Aging Tolerance Mechanism Validation
 - Overhead Analysis
- Conclusions

Experimental Results

- We implement a 32K-bit STT-MRAMs in 90nm CMOS technology.
 - Row and column decoders, write drivers, and sense amplifiers, following by integrating the STT-MRAM structure with our aging detection circuit, aging tolerance circuit, and LUTs in SPICE.
 - Operating voltage is 1V.
- We perform HSPICE simulations with write and read operations under different aging status to valid the proposed aging detection and tolerance mechanisms.
- All experiments are performed on a 20-core, 2.5GHZ, Intel Xeon Gold 6248 CPU, with 160GB memory, and CentOS release 6.10 machine.

Experimental Results

• The waveform of read operation with our proposed framework.

Aging Detection Mechanism Validation

• Aging detection result.

Health level.	$R_{AP}(k\Omega)$	$R_{\mathbf{P}}(\mathbf{k}\Omega)$	$V_{aged}(mV)$,	W.	S.
Nominal	>= 4.1.	>= 1.94.	>= 520.	0.0	^{ده} 0
Weak aging.	3.91~3.01	1.89~1.58.	514~475.	1.	Q *3
Strong aging.	2.87~2.05	1.53~1.22.	468~422.	1.	1.0

Table IV Aging detection result for different aging situations.

Aging Detection Mechanism Validation

• To observe the effectiveness in the consideration of variations, we perform 1000 Monte-Carlo simulations with 5% variation.

Aging Tolerance Mechanism Validation

• The reliability of STT-MRAM array at different time can be expressed as follows:

$$R(t) = e^{-\left[(SIZE - SIZE_e)\lambda\left(R_{REF_{initial}}, t\right) + SIZE_e\lambda\left(R_{REF_{adjust}}, t\right)\right]}$$

• $\lambda(R_{REF}, t)$ is the failure rate at different time and it can be shown as follows:

$$\lambda(R_{REF},t) = \frac{\beta}{T1} e^{\left(R_{REF} - R_{MTJ}(t)\right)}$$

• To show the feasibility of our framework, we analyzed 500, 1000, 1500, and 2000 hours as *T*1 time to observe the effectiveness of the aging tolerance mechanism for reliability enhancement.

Aging Tolerance Mechanism Validation

• T1 = 500 hours

◆ T1 = 1000 hours

Aging Tolerance Mechanism Validation

• T1 = 1500 hours

Cov=0% Cov=0% 0.9 Cov=10% Cov=10% Cov=20% Cov=20% 0.8 0.8 Reliability 9.0 Reliability 0.6 0.5 0.4 0.4 0.3 0.2 2 3 4 5 2 3 5 0 0 4 x1500 hours x 2000 hours Time Time

◆ T1 = 2000 hours

Overhead Analysis

• Overhead.

Table V The area (um ²) of our framework which consists of memory array, aging	
detection and tolerance mechanism and LUT.	

Table VI The power (mW) of our framework which consists of memory array, aging detection and tolerance mechanism and LUT.

Bit-width.	$\underline{Cov} = 0\%$	Cov = 10%	$\underline{Cov} = 20\%$	Bit-width.	$\underline{Cov} = 0\%$	$\underline{Cov} = 10\%$	$\underline{Cov} = 20\%$
16 bits.	16981.8.	18217.0 (+7.2%).	19445.8 (+14.5%).	16 bits.	355.0	382 (x1.07).	399 (x1.12).
32 bits.	17128.4.	17714.6 (+3.4%).	18288.1 (+6.7%).	32 bits.	710.	734 (x1.034).	740 (x1.04).
64 bits.	17336.0.	17626.8 (+1.6%).	17892.0 (+3.2%).	64 bits.	1434.	1456 (x1.015).	1457 (x1.016).

Conclusions

- We propose a novel on-line aging detection and tolerance framework for improving reliability of STT-MRAMs.
- Our aging detection mechanism is based on monitoring the variation of read current of the MTJ, and our aging tolerance mechanism is based on reference resistance adjustment.
- Simulation and analysis results show that the proposed techniques can successfully detect 99% aging words under process variation and achieve at most 25% reliability improvement of STT-MRAMs with COV = 20%.

Thank you

Q&A