
An Equivalence Checking Framework
for Agile Hardware Design

Yanzhao Wang1, Fei Xie1,
Zhenkun Yang2, Pasquale Cocchini2, Jin Yang2

 1Portland State University, Portland, OR, 97201,
2Intel Labs, Hillsboro, OR, 97124

1

Outline

• Motivation and Background

• Equivalence Checking Framework
• Naïve approach
• Challenges
• Proposed solutions
• Optimized equivalence checking framework
• Integration with HalideIR-based Agile Hardware Design Frameworks

• Evaluations

• Summary & Future Work

2

Agile Hardware Design

• Design agility
• Designers can experiment at a higher level of abstraction to

explore design space optimizations

• Implementation agility
• Designers can generate various platform specific

implementations of designs quickly

3

Agile Hardware Design with HalideIR

• HalideIR is a popular IR in image
processing and deep-learning

• HalideIR enables agile design because it
separates the specification of an algorithm
from its execution schedule

• HeteroCL is an agile hardware design
framework that utilizes HalideIR. We use it
as our target

4

Outline

• Motivation and Background

• Equivalence Checking Framework
• Naïve approach
• Challenges
• Proposed solutions
• Optimized equivalence checking framework
• Integration with HalideIR-based Agile Hardware Design Frameworks

• Evaluations

• Summary & Future Work

5

Naïve Approach

• Given two designs S and T, we
lower them into C++

• Then use KLEE to check if two C++
are equivalent.

• Otherwise, we identify the reasons
for the divergence

6

Challenges

• Checking entire designs is not scalable
• A direct comparison between the entire states of two designs can easily lead

to path explosion for non-trivial designs and does not scale to complex designs
• When comparing entire design states, the points of divergence between the

designs compared cannot be easily located, making debug very challenging

• Writing test harness requires major manual efforts
• Checking synthesizable C++ code by symbolic execution requires time-

consuming and error-prone manual work in creating test harnesses that
include symbolic inputs, outputs, and wrapper code

7

Proposed Solutions

• Identification of minimal check units
• Identifying HalideIR Stage as a minimal check unit
• Using a stage as a check unit to locate the specific operations that cause

divergences in design behaviors

• Automatic uninterpreted function optimization
• For certified sub-stages of a stage, replace sub-stages with equivalent

uninterpreted functions.
• For each certified minimal check unit, use KLEE to check that their input variables

are equivalent and remove all nodes in minimal check units

• Automatic test harness generation
• Identifying input and output variables to minimal check units

8

Example of HalideIR Stages

9

Identifying Minimal Check Units

10

Designs with Significant IR Structure Differences

11

Proposed Solutions

• Identification of minimal check units
• Identifying HalideIR Stage as a minimal check unit
• Using a stage as a check unit to locate the specific operations that cause

divergences in design behaviors

• Automatic uninterpreted function optimization
• For certified sub-stages of a stage, replace sub-stages with equivalent

uninterpreted functions.
• For each certified minimal check unit, use KLEE to check that their input variables

are equivalent and remove all nodes in minimal check units

• Automatic test harness generation
• Identifying input and output variables to minimal check units

12

Example of Replacing Certified Stages with Uninterpreted
Functions

13

Proposed Solutions

• Identification of minimal check units
• Identifying HalideIR Stage as a minimal check unit
• Using a stage as a check unit to locate the specific operations that cause

divergences in design behaviors

• Automatic uninterpreted function optimization
• For certified sub-stages of a stage, replace sub-stages with equivalent

uninterpreted functions.
• For each certified minimal check unit, use KLEE to check that their input variables

are equivalent and remove all nodes in minimal check units

• Automatic test harness generation
• Identifying input and output variables to minimal check units

14

Structure of Test Harness with Synthesized C++ Code of Minimal Check
Units

• Setup phase
• Making input variables

symbolic
• Execute phase

• C++ code from minimal
check units

• Check phase
• Equivalence checking for

output variables

15

Identifying Input and Output Variables for Synthesized C++
Code

• Identifying input variables
• Input variables are variables within the minimal check unit that

are neither allocated nor written by Allocate or Store nodes

• Identifying output variables
• Output variables are variables within the minimal check unit

that are written by the unit’s internal Store nodes, but not
allocated by the Allocate nodes.

16

Example of Identifying Input and Output Variables

17

Optimized Equivalence Checking Framework

• Designs are first lowered to
HalideIR

• IR checker determines if two IRs
are structurally equivalent. If no, it
produces minimal check units to
the test harness generator

• Test harness generator wraps the
code to an executable C++
program

• KLEE determines if two designs are
behaviorally equivalent

18

Integration with HalideIR-based Agile Hardware Design
Frameworks

19

Outline

• Motivation and Background

• Equivalence Checking Framework
• Naïve approach
• Challenges
• Proposed solutions
• Optimized equivalence checking framework
• Integration with HalideIR-based Agile Hardware Design Frameworks

• Evaluations

• Summary & Future Work

20

Evaluations Background

• We conduct verifications for two hardware designs from Intel that are
implementations of an open-source deep-learning accelerator: VTA

• sVTA

• A sequential model of of an open-source deep-learning accelerator: Versatile
Tensor Accelerator (VTA)

• uVTA

• A VTA model breaks down each of the 128-bit instructions into smaller micro-ops
for potential parallelization.

• hVTA

• A HeteroCL version of the VTA architecture strictly following its original structure

21

Evaluations

Design LoC Python LoC C++
Minimal Check Unit &
Uninterpreted Function
Optimization

Time (s)
Memory
Consumptio
n
(MB)

of
Stages

of
Structural
Inconsistencies

of
Behavioral
Inconsistencies

sVTA-hVTA
296 560 No Timeout 6781.73 No Data No Data No Data

sVTA-hVTA 296 560 Yes 65.39 128.37 211 8 2

uVTA-hVTA 195 1224 No Timeout 7384.34 No Data No Data No Data

uVTA-hVTA 195 1224 Yes 1238.38 2384.98 301 84 3

22

sVTA Inconsistency with hVTA in ALU Module

OPCODE DEPT
FLAGS RESET UOP_

BGN
UOP_
END End0 End1 Unused

DST
IDX 0

DST
IDX 1

SRC
IDX 0

SRC
IDX 1

ALU
OPCODE

USE_
IMM

IMMEDIATE
(IMM)

0 63

64 127110 111

VTA ALU Instruction

sVTA ALU Instruction

ALU
OPCODE

IMMEDIATE
(IMM)

64 127111 112

108

108

OPCODE DEPT
FLAGS RESET UOP_

BGN
UOP_
END End0 End1 Unused

0 63

DST
IDX 0

DST
IDX 1

SRC
IDX 0

SRC
IDX 1

USE_
IMM

126

Unused

ALU_OPCODE = hcl.scalar(instr[111:108],
name="ALU_OPCODE") # extend to 3 bits

USE_IMM = hcl.scalar(instr[112:111],
name=“USE_IMM",dtype=hcl.UInt(1))

IMM = hcl.scalar(instr[128:112], name="IMM")
src = hcl.select(USE_IMM.v == 1,
hcl.cast(hcl.Int(16), IMM),
 hcl.cast(hcl.Int(32), src_tensor[x][y]))

dst = hcl.cast(hcl.Int(32), dst_tensor[x][y])

with hcl.if_(ALU_OPCODE.v == VTA_ALU_OPCODE_MIN):
dst_tensor[x][y] = hcl.select(dst <= src,
dst_tensor[x][y], src)

23

uVTA-hVTA Inconsistency in Load Module

is_min_pad_value = hcl.scalar(instr[58:57],
name="is_pad_min_value")

pad_val = hcl.select(is_min_pad_value.v == 1,\
 hcl.cast(hcl.Int(16), 1 << (sram_bits - 1)), 0)

sram_idx = sram_base + x_tot * y + x

def clear(row, col):
 sram[sram_idx][row][col] = pad_val

hcl.mutate((nrows, ncols),clear,name='pad_clear')

OPCOD
E

DEPT
FLAG

MEM
TYPE Unused

0 6

VTA Store/Load Instruction

uVTA Store/Load Instruction

OPCOD
E

DEPT
FLAG

MEM
TYPE SRAM_BASE DRAM_BASE Unuse

d

0 6

SRAM_BASE DRAM_BASE

5

pad
value

5 5

24

uVTA Code

hVTA Code

Outline

• Motivation and Background

• Equivalence Checking Framework
• Naïve approach
• Challenges
• Proposed solutions
• Optimized equivalence checking framework
• Integration with HalideIR-based Agile Hardware Design Frameworks

• Evaluations

• Summary & Future Work

25

Summary & Future Work

• Present a scalable equivalence checking framework for HalideIR

• Demonstrate the framework's effectiveness by performing
equivalence checking on two practical deep-learning accelerator
designs, sVTA, and uVTA

• Further optimize our framework for minimal check units with
significant structural differences that may still post symbolic analysis
challenges

26

