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Agile Hardware Design

• Design agility 
• Designers can experiment at a higher level of abstraction to 

explore design space optimizations 

• Implementation agility 
• Designers can generate various platform specific 

implementations of designs quickly
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Agile Hardware Design with HalideIR

• HalideIR is a popular IR in image 
processing and deep-learning 

• HalideIR enables agile design because it 
separates the specification of an algorithm 
from its execution schedule 

• HeteroCL is an agile hardware design 
framework that utilizes HalideIR. We use it 
as our target
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Naïve Approach

• Given two designs S and T, we 
lower them into C++ 

• Then use KLEE to check if two C++ 
are equivalent.  

• Otherwise, we identify the reasons 
for the divergence 
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Challenges

• Checking entire designs is not scalable 
• A direct comparison between the entire states of two designs can easily lead 

to path explosion for non-trivial designs and does not scale to complex designs 
• When comparing entire design states, the points of divergence between the 

designs compared cannot be easily located, making debug very challenging 

• Writing test harness requires major manual efforts 
• Checking synthesizable C++ code by symbolic execution requires time-

consuming and error-prone manual work in creating test harnesses that 
include symbolic inputs, outputs, and wrapper code
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Proposed Solutions

• Identification of minimal check units 
• Identifying HalideIR Stage as a minimal check unit 
• Using a stage as a check unit to locate the specific operations that cause 

divergences in design behaviors 

• Automatic uninterpreted function optimization 
• For certified sub-stages of a stage, replace sub-stages with equivalent 

uninterpreted functions. 
• For each certified minimal check unit, use KLEE to check that their input variables 

are equivalent and remove all nodes in minimal check units 

• Automatic test harness generation 
• Identifying input and output variables to minimal check units
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Example of HalideIR Stages
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Identifying Minimal Check Units
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Designs with Significant IR Structure Differences
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Example of Replacing Certified Stages with Uninterpreted 
Functions
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Structure of Test Harness with Synthesized C++ Code of Minimal Check 
Units

• Setup phase 
• Making input variables 

symbolic 
• Execute phase 

• C++ code from minimal 
check units 

• Check phase 
• Equivalence checking for 

output variables
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Identifying Input and Output Variables for Synthesized C++ 
Code

• Identifying input variables 
• Input variables are variables within the minimal check unit that 

are neither allocated nor written by Allocate or Store nodes 

• Identifying output variables 
• Output variables are variables within the minimal check unit 

that are written by the unit’s internal Store nodes, but not 
allocated by the Allocate nodes.
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Example of Identifying Input and Output Variables
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Optimized Equivalence Checking Framework

• Designs are first lowered to 
HalideIR 

• IR checker determines if two IRs 
are structurally equivalent. If no, it 
produces minimal check units to 
the test harness generator 

• Test harness generator wraps the 
code to an executable C++ 
program 

• KLEE determines if two designs are 
behaviorally equivalent
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Integration with HalideIR-based Agile Hardware Design 
Frameworks

19



Outline

• Motivation and Background 

• Equivalence Checking Framework 
• Naïve approach 
• Challenges 
• Proposed solutions 
• Optimized equivalence checking framework 
• Integration with HalideIR-based Agile Hardware Design Frameworks 

• Evaluations 

• Summary & Future Work

20



Evaluations Background

• We conduct verifications for two hardware designs from Intel that are 
implementations of an open-source deep-learning accelerator: VTA 

• sVTA 

• A sequential model of of an open-source deep-learning accelerator: Versatile 
Tensor Accelerator (VTA) 

• uVTA 

• A VTA model breaks down each of the 128-bit instructions into smaller micro-ops 
for potential parallelization. 

• hVTA 

• A HeteroCL version of the VTA architecture strictly following its original structure
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Evaluations

Design LoC Python LoC C++
Minimal Check Unit & 
Uninterpreted Function 
Optimization

Time (s)
Memory 
Consumptio
n  
(MB)

# of 
Stages

# of 
Structural 
Inconsistencies

# of 
Behavioral 
Inconsistencies

sVTA-hVTA
296 560 No Timeout 6781.73 No Data No Data No Data

sVTA-hVTA 296 560 Yes 65.39 128.37 211 8 2

uVTA-hVTA 195 1224 No Timeout 7384.34 No Data No Data No Data

uVTA-hVTA 195 1224 Yes 1238.38 2384.98 301 84 3
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sVTA Inconsistency with hVTA in ALU Module
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Unused

ALU_OPCODE = hcl.scalar(instr[111:108], 
name="ALU_OPCODE") # extend to 3 bits 

USE_IMM = hcl.scalar(instr[112:111], 
name=“USE_IMM",dtype=hcl.UInt(1)) 

IMM = hcl.scalar(instr[128:112], name="IMM") 
src = hcl.select(USE_IMM.v == 1, 
hcl.cast(hcl.Int(16), IMM), 
      hcl.cast(hcl.Int(32), src_tensor[x][y])) 

dst = hcl.cast(hcl.Int(32), dst_tensor[x][y]) 

with hcl.if_(ALU_OPCODE.v == VTA_ALU_OPCODE_MIN): 
dst_tensor[x][y] = hcl.select(dst <= src,  
dst_tensor[x][y], src) 
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uVTA-hVTA Inconsistency in Load Module

is_min_pad_value = hcl.scalar(instr[58:57], 
name="is_pad_min_value") 

pad_val = hcl.select(is_min_pad_value.v == 1,\ 
    hcl.cast(hcl.Int(16), 1 << (sram_bits - 1)), 0) 

sram_idx = sram_base + x_tot * y + x 

def clear(row, col): 
    sram[sram_idx][row][col] = pad_val 

hcl.mutate((nrows, ncols),clear,name='pad_clear') 
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VTA Store/Load Instruction

uVTA Store/Load Instruction
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uVTA Code

hVTA Code
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Summary & Future Work

• Present a scalable equivalence checking framework for HalideIR 

• Demonstrate the framework's effectiveness by performing 
equivalence checking on two practical deep-learning accelerator 
designs, sVTA, and uVTA 

• Further optimize our framework for minimal check units with 
significant structural differences that may still post symbolic analysis 
challenges
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