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Sparse matrix-vector multiplication

SpMV multiplies every row in a sparse matrix by a
corresponding element in the input vector to obtain
every element in the output vector.

For example:
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The compressed formats of the sparse matrix
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« COOrdinate (COOQO)
values, column indexes, and row indexes
« Compressed Sparse Column (CSC)
replaces column indexes with the ptr
« Compressed Sparse Row (CSR)

replaces row indexes with the ptr



The compressed formats of the sparse matrix
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Data size | Control logic
COO simple
CSR & CSC small




Sparse matrix-vector multiplication(SpMV)

The SpMV can be expressed as Equation:

cols
y; = Z Ajj*xj(Ajj #0,0 <i<rows)
Jj=0

For one non-zero elements 4; ;:

Stepl.:
Step2:
Step3:
Step4.
Step5:

access its input vector (x) Irregular access
multiply with x

access its partial sum (y) irregular access
add with y

update y Irregular access

3 irregular memory accesses

2 floating-point calculations



The challenge of the SpMV

An example of parallel SpMV. In the example, 4 non-zero
elements are computed in a cycle:
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Challenges of parallel SpMV:

* read port conflicts \
. write conflicts /

Irregular access



The related work of the SpMV

There are two different works to reduce irregular access
conflicts:

* Replacing the column indices ( ) of the COO
format with the corresponding input vector elements
( )[1].

eliminate port conflict &

« Using element-wise data reordering is carefully
performed to form a data group referring to only two
vector elements in a cycle[2].

can not reduce the port limit in some matrices.

[1] Optimized Data Reuse via Reordering for Sparse Matrix-Vector Multiplication on FPGAs.

[2] ReDESK: A Reconfigurable Dataflow Engine for Sparse Kernels on Heterogeneous Platforms.



The challenge of the SpMV

Challenges:
 port limit

e write conflict

The measures in our work:

« Reading-Conflict-Free vector buffer

Duplicating vector elements via partition

« Writing-Conflict-Free adder tree

e COO format

Data Preprocessing
Algorithm

Data after partition
—

FPGA
hardware




The reason for partitioning

The number of elements in the input vector = the number
of columns in the matrix

The SpMV on big size matrix: the storage space for input
vector > the size of BRAM

\ 4

Partition the input vector and the matrix



How to do partitioning
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Matrix is partitioned into two block
Vector is partitioned into two segments
Each block is partitioned into three batches

Partial sums of each block are added up to
output result

get the



How to execution after partitioning
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LDV-load vector LDM-load matrix RDV-read vector
MUL-multiplication ADD-addition ACC-accumulation
STP-store partial sum LDP-load partial sum

 batch-by-batch within a block
* block-by-block among blocks



Formulation

To eliminate the impact of bandwidth in different designs,
related works use normalized bandwidth utilization as the
metric, which is the ratio of performance (GFLOPS) to off-
chip memory bandwidth (GB/s) in the unit GFLOP/GB:

2 * Nponzero
BU = :
Datawidthyyie * Crotar

* N, onzero - the number of non-zero elements

* Ciotqr - the total execution time in cycles

* Datawidthyy, : the data width in bytes of the off-chip
memory interface



Formulation

Ctotal = Clay + Cexe + Cpipe

* (14, . the cycles for processing the data in all batches
* C..e. the total execution time in cycles

* Chipe. the cycles for starting the pipeline



Overall Architecture
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« Decoder loads data.

e Decoder sends data to the read-conflict-free vector
buffer, accumulator, or matrix buffer.

« PESs read matrix elements and vector elements.
* Pes perform multiplication operations.

« Send the multiplication results to the writing-conflict-
free adder tree.



Overal

Architecture
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« Adder tree performs addition operations.

« Accumulators add all partial sums.

« \Write results to the on-chip partial sum.




The reason for increasing the port of the vector
buffer

For a non-zero element, COO includes a 64-bit double float
value, a 32-bit row index, and a 32-bit column index. The
512-bit off-chip bandwidth can load 4 matrix elements from
DRAM to the decoder per cycle.

4 irregular accesses

4 independent read ports



The architecture of the vector buffer
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 Each sub-buffer include 4 BRAMS.

 In each sub-buffer, two 4-to-1 multiplexers (MUXs) are

added to select vector elements from different BRAMSs
to 2 PEs.



Time-division multiplexing of the vector buffer
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 For loading vector elements, the ports work as
writing ports.

* For performing multiplication operations, the ports
work as reading ports.



The architecture of adder tree

Four Products from PEs

5 Writing-Conflict-Free AdderlTree
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Taking the multiplication result as inputs.

Two adders are used to add the inputs and store the
addition results to register.

Another adder is used to add the previous addition
results up and store the sum to register.

Crossbar switch to select four partial sums as outputs.



Experiment setup

Benchmark

« Xilinx Zyng UltraScale ZCU106 (XCZU7EV-
2FFVC1156 FPGA)

 University of Florida sparse matrix

Matrix Rows/Cols Nonzero Density
raefsky1 3242 293409 2.79156%
memplus 17758 99147 0.03144%
stanford 281903 2312497 0.00291%
s3dkt3m2 90449 3686223 0.04506%
psmigr_2 3140 540022 5.47712%

rmal0 46835 2329092 0.10618%

t2d_q9 9801 87025 0.09060%

epbl 14734 95053 0.04379%
Ins_3937 3937 25407 0.04379%
mac_econ 206500 1273389 0.00299%
dw8192 8192 41746 0.06180%
pwtk 217918 11524432 0.02427%




Experiment setup

Parameter Setup
100 MHz
* block width is set to 24
 patch height is set to 64
Baseline
 ReDESK
» ReOrder



Bandwidth utilization
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* Theoretical peak BU is 0.125.

« Our work Achieve 1.26x and 1.10x improvement
on BU compared to ReDESK and ReOrder.



Batch height

* The average BU increases with

o 0.12

%0118 o1 2T the increase in batch height.

o Tomwes, . .

2 * A higher batch height means
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Resource

ReOrder has the same
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Conclusion

e partition matrix and vectors

* read-conflict-free vector buffer

 writing-conflict-free adder tree



THANKS



