
1

Towards High-Bandwidth-Utilization

SpMV on FPGAs via Partial Vector

Duplication

ASP-DAC 2023

Bowen Liu, Dajiang Liu*

Chongqing University

Outline

• Background

• Related works & Challenges

• Data preprocessing algorithm

• Hardware

• Experiment

Sparse matrix-vector multiplication

SpMV multiplies every row in a sparse matrix by a

corresponding element in the input vector to obtain

every element in the output vector.

For example:

The compressed formats of the sparse matrix

• COOrdinate (COO)

values, column indexes, and row indexes

• Compressed Sparse Column (CSC)

replaces column indexes with the 𝑝𝑡𝑟

• Compressed Sparse Row (CSR)

replaces row indexes with the 𝑝𝑡𝑟

The compressed formats of the sparse matrix

Data size Control logic

COO large simple

CSR & CSC small complex

Sparse matrix-vector multiplication(SpMV)

The SpMV can be expressed as Equation:

For one non-zero elements 𝐴𝑖,𝑗:

• Step1: access its input vector (𝑥)

• Step2: multiply with 𝑥

• Step3: access its partial sum (𝑦)

• Step4: add with 𝑦

• Step5: update 𝑦

3 irregular memory accesses

2 floating-point calculations

irregular access

irregular access

irregular access

The challenge of the SpMV

Challenges of parallel SpMV:

• read port conflicts

• write conflicts

An example of parallel SpMV. In the example, 4 non-zero

elements are computed in a cycle:

Irregular access

The related work of the SpMV

There are two different works to reduce irregular access

conflicts:

• Replacing the column indices (32 bits) of the COO

format with the corresponding input vector elements

(64 bits)[1].

eliminate port conflict & more data redundancy

• Using element-wise data reordering is carefully

performed to form a data group referring to only two

vector elements in a cycle[2].

can not reduce the port limit in some matrices.

[1] Optimized Data Reuse via Reordering for Sparse Matrix-Vector Multiplication on FPGAs.

[2] ReDESK: A Reconfigurable Dataflow Engine for Sparse Kernels on Heterogeneous Platforms.

The challenge of the SpMV

Challenges:

• port limit

• write conflict

• data redundancy

The measures in our work:

• Reading-Conflict-Free vector buffer

Duplicating vector elements via partition

• Writing-Conflict-Free adder tree

• COO format

Data Preprocessing

Algorithm

FPGA

hardware

Data after partition

The reason for partitioning

The number of elements in the input vector = the number

of columns in the matrix

The SpMV on big size matrix: the storage space for input

vector > the size of BRAM

Partition the input vector and the matrix

How to do partitioning

• Matrix is partitioned into two block

• Vector is partitioned into two segments

• Each block is partitioned into three batches

• Partial sums of each block are added up to get the

output result

How to execution after partitioning

LDV-load vector LDM-load matrix RDV-read vector

MUL-multiplication ADD-addition ACC-accumulation

STP-store partial sum LDP-load partial sum

• batch-by-batch within a block

• block-by-block among blocks

Formulation

To eliminate the impact of bandwidth in different designs,

related works use normalized bandwidth utilization as the

metric, which is the ratio of performance (GFLOPs) to off-

chip memory bandwidth (GB/s) in the unit GFLOP/GB:

𝐵𝑈 =
2 ∗ 𝑁𝑛𝑜𝑛𝑧𝑒𝑟𝑜

𝐷𝑎𝑡𝑎𝑤𝑖𝑑𝑡ℎ𝑏𝑦𝑡𝑒 ∗ 𝐶𝑡𝑜𝑡𝑎𝑙

• 𝑁𝑛𝑜𝑛𝑧𝑒𝑟𝑜 : the number of non-zero elements

• 𝐶𝑡𝑜𝑡𝑎𝑙 : the total execution time in cycles

• 𝐷𝑎𝑡𝑎𝑤𝑖𝑑𝑡ℎ𝑏𝑦𝑡𝑒 : the data width in bytes of the off-chip

memory interface

Formulation

• 𝐶𝑙𝑑𝑣 : the cycles for processing the data in all batches

• 𝐶𝑒𝑥𝑒: the total execution time in cycles

• 𝐶𝑝𝑖𝑝𝑒: the cycles for starting the pipeline

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑙𝑑𝑣 + 𝐶𝑒𝑥𝑒 + 𝐶𝑝𝑖𝑝𝑒

Overall Architecture

• Decoder loads data.

• Decoder sends data to the read-conflict-free vector

buffer, accumulator, or matrix buffer.

• PEs read matrix elements and vector elements.

• Pes perform multiplication operations.

• Send the multiplication results to the writing-conflict-

free adder tree.

Overall Architecture

• Adder tree performs addition operations.

• Accumulators add all partial sums.

• Write results to the on-chip partial sum.

The reason for increasing the port of the vector

buffer

For a non-zero element, COO includes a 64-bit double float

value, a 32-bit row index, and a 32-bit column index. The

512-bit off-chip bandwidth can load 4 matrix elements from

DRAM to the decoder per cycle.

4 irregular accesses

4 independent read ports

The architecture of the vector buffer

• Each sub-buffer include 4 BRAMs.

• In each sub-buffer, two 4-to-1 multiplexers (MUXs) are

added to select vector elements from different BRAMs

to 2 PEs.

Time-division multiplexing of the vector buffer

• For loading vector elements, the ports work as

writing ports.

• For performing multiplication operations, the ports

work as reading ports.

• Taking the multiplication result as inputs.

• Two adders are used to add the inputs and store the

addition results to register.

• Another adder is used to add the previous addition

results up and store the sum to register.

• Crossbar switch to select four partial sums as outputs.

The architecture of adder tree

Experiment setup

Benchmark

• Xilinx Zynq UltraScale ZCU106 (XCZU7EV-

2FFVC1156 FPGA)

• University of Florida sparse matrix

Experiment setup

Parameter Setup

• 100 MHz

• block width is set to 214

• batch height is set to 64

Baseline

• ReDESK

• ReOrder

Bandwidth utilization

• Theoretical peak BU is 0.125.

• Our work Achieve 1.26x and 1.10x improvement

on BU compared to ReDESK and ReOrder.

Batch height

• The average BU increases with

the increase in batch height.

• A higher batch height means

that the accumulators require

more LUT resources.

Resource

• ReOrder has the same

hardware as ours

• More LUTs

• Fewer FFs¥BRAMs¥DSPs

• Same URAM

Conclusion

• partition matrix and vectors

• read-conflict-free vector buffer

• writing-conflict-free adder tree

THANKS

