Towards High-Bandwidth-Utilization
SpMV on FPGAs via Partial Vector
Duplication

ASP-DAC 2023

Bowen Liu, Dajiang Liu*
Chongging University

Outline

« Background

* Related works & Challenges

« Data preprocessing algorithm

e Hardware

* Experiment

Sparse matrix-vector multiplication

SpMV multiplies every row in a sparse matrix by a
corresponding element in the input vector to obtain
every element in the output vector.

For example:

1 X1 V1
2 X2 V2

314
v X3 _ P3
X4 V4
X5 Vs
5 6|7 8 X Ve

The compressed formats of the sparse matrix
1 by val[1[2[3]4]5[6]7]8
81’0“7
X Vo 1 col
3|4 | s 8:;1‘735246718
X4 Val ©lpefo]2]a]s]6]7]3
X = Vs val |1 12 |3|4|5|6|7]|8
| col
5 617 81 el Po| ©[prlol3[a]6]7]0]10

« COOrdinate (COOQO)
values, column indexes, and row indexes
« Compressed Sparse Column (CSC)
replaces column indexes with the ptr
« Compressed Sparse Row (CSR)

replaces row indexes with the ptr

The compressed formats of the sparse matrix
0 1 2 3 4 5
val[1[2[3]4]5[6]7]8
xl yl 81’0“7
X, Vo ©leol a1]of1]o]2]3]5
3|4 i val [3[5[2]4]6]7]1]8
x [=)’3 A | row
X4 Val ©lpefo]2]a]s]6]7]3
x5 ys val | 1 2 3 415 6 7
Sleol [4]1]0|1]0]2[3]5
5 617 8| o] Ps| S[pwlolzl2l6]7]o 10

Data size | Control logic
COO simple
CSR & CSC small

Sparse matrix-vector multiplication(SpMV)

The SpMV can be expressed as Equation:

cols
y; = Z Ajj*xj(Ajj #0,0 <i<rows)
Jj=0

For one non-zero elements 4; ;:

Stepl.:
Step2:
Step3:
Step4.
Step5:

access its input vector (x) Irregular access
multiply with x

access its partial sum (y) irregular access
add with y

update y Irregular access

3 irregular memory accesses

2 floating-point calculations

The challenge of the SpMV

An example of parallel SpMV. In the example, 4 non-zero
elements are computed in a cycle:

0 T PEFM |
ANE S val |3|5[2(4|/[1]|6]7]|8[7|8
s —{ PE —| ®© ; !
2|34 < 3 |
3 < o g col o(of1(1 41213 5: 3(5 Write conflicts
[t — 8 Sp——
@
4 el row 2|s|1l2]'[ol2]5 5

Challenges of parallel SpMV:

* read port conflicts \
. write conflicts /

Irregular access

The related work of the SpMV

There are two different works to reduce irregular access
conflicts:

* Replacing the column indices () of the COO
format with the corresponding input vector elements
()[1].

eliminate port conflict &

« Using element-wise data reordering is carefully
performed to form a data group referring to only two
vector elements in a cycle[2].

can not reduce the port limit in some matrices.

[1] Optimized Data Reuse via Reordering for Sparse Matrix-Vector Multiplication on FPGAs.

[2] ReDESK: A Reconfigurable Dataflow Engine for Sparse Kernels on Heterogeneous Platforms.

The challenge of the SpMV

Challenges:
 port limit

e write conflict

The measures in our work:

« Reading-Conflict-Free vector buffer

Duplicating vector elements via partition

« Writing-Conflict-Free adder tree

e COO format

Data Preprocessing
Algorithm

Data after partition
—

FPGA
hardware

The reason for partitioning

The number of elements in the input vector = the number
of columns in the matrix

The SpMV on big size matrix: the storage space for input
vector > the size of BRAM

\ 4

Partition the input vector and the matrix

How to do partitioning

Psumy Psum, Result
B batch,| batch, D @ H B -
g ateng batch, = ® XE | ® XE - B ¥ H T B
Batehs| batch. ©) ® I s
block, block; - - -

Matrix is partitioned into two block
Vector is partitioned into two segments
Each block is partitioned into three batches

Partial sums of each block are added up to
output result

get the

How to execution after partitioning

o 5 : block, : block,
G 2 LDV batch, batch, batch, ~ LDV batch;batch, batchs
?:3"% LDM [LDM LDM LDM LDMf] LDM
. RDV [RDV. RDV RDV RDV [RDV
. MUL [MUL MUL MUL MULJ mMuL
' ADD [ADD ADD ADD ADDf] ADD
< ' ACC ['ACC AcC ACC AcCCfl Acc
ES 3 STP [ISTP: | STP STP STP STP
£ a e IDPY [LDP LDP LDP LDP
C_ﬂ I I
LDV-load vector LDM-load matrix RDV-read vector
MUL-multiplication ADD-addition ACC-accumulation
STP-store partial sum LDP-load partial sum

 batch-by-batch within a block
* block-by-block among blocks

Formulation

To eliminate the impact of bandwidth in different designs,
related works use normalized bandwidth utilization as the
metric, which is the ratio of performance (GFLOPS) to off-
chip memory bandwidth (GB/s) in the unit GFLOP/GB:

2 * Nponzero
BU = :
Datawidthyyie * Crotar

* N, onzero - the number of non-zero elements

* Ciotqr - the total execution time in cycles

* Datawidthyy, : the data width in bytes of the off-chip
memory interface

Formulation

Ctotal = Clay + Cexe + Cpipe

* (14, . the cycles for processing the data in all batches
* C..e. the total execution time in cycles

* Chipe. the cycles for starting the pipeline

Overall Architecture

-

Accumulators

.

HFegl—

PEs

F 3

4

Writing-Coanict-FreeI

A 4

Crossbar switch

Free
Vector Buffer

PE,
PE,
PE,
PE,

=
L

A 4

v
Read-Conflict-

Psum
Buffer

DRAM
Decoder
MUX

~D—fregf-—
D fregh—

F'y

w

Y

Adder Tree

Y
A 4

Matrix
Buffer

« Decoder loads data.

e Decoder sends data to the read-conflict-free vector
buffer, accumulator, or matrix buffer.

« PESs read matrix elements and vector elements.
* Pes perform multiplication operations.

« Send the multiplication results to the writing-conflict-
free adder tree.

Overal

Architecture
805 PEs B Accumulators
cop [¢ 1.5 o0 Ll2HE _'\
PSSt PILPE IS o P13
57253 =< [Els
H{B |5 | |[PEiE S Pl oo TeE
o Sl|1& = o3 | |8l ——== |2
S & o (P 22 M-t~
T @ = O
-~ &£ | PE; & -f® .
S & § »Dregi—)
A

A 4

Psum
Buffer

« Adder tree performs addition operations.

« Accumulators add all partial sums.

« \Write results to the on-chip partial sum.

The reason for increasing the port of the vector
buffer

For a non-zero element, COO includes a 64-bit double float
value, a 32-bit row index, and a 32-bit column index. The
512-bit off-chip bandwidth can load 4 matrix elements from
DRAM to the decoder per cycle.

4 irregular accesses

4 independent read ports

The architecture of the vector buffer

] Decoder
| =

[a}] =] — o~ o :rl lm‘ [- E

Y = = = = = = = = Y

5 AIERIERIE SIERIERIERE

CD [=a] (=] [=a] =] =] [=a] =] (=] o
3\Mux/\Mux/\Mux/\Mux/§

= ! | ,—l—'—|‘=|
PEArmay™ o PE, PE, PE,

 Each sub-buffer include 4 BRAMS.

 In each sub-buffer, two 4-to-1 multiplexers (MUXs) are

added to select vector elements from different BRAMSs
to 2 PEs.

Time-division multiplexing of the vector buffer

] Decoder
| =

[a}] =] — o~ o :rl lm‘ [- E

Y = = = = = = = = Y

5 AIERIERIE SIERIERIERE

CD [=a] (=] [=a] =] =] [=a] =] (=] o
3\Mux/\Mux/\Mux/\Mux/§

= ! | ,—l—'—|‘=|
PEArmay™ o PE, PE, PE,

 For loading vector elements, the ports work as
writing ports.

* For performing multiplication operations, the ports
work as reading ports.

The architecture of adder tree

Four Products from PEs

5 Writing-Conflict-Free AdderlTree

1 — 1 1

p0,0 —l S8 — p0,3 p— 88— pO,S . pO,G 4[,2

P10 1 —Pi3f— = —Puis) < P | S

P20 1 o ——1 P23 f— = —Pas b= P26 g

P30 —P33— =+ —P3s 2 o P3s [
. . A o
| M | 0 & ik
: D <D, d14 —{ 915 — 2 L
' - adder1l ! = « RS
: @ : CDo'dchfs'."S S - [S
: v GO 335 — [
1 3 1 1 :
t re, ddder2, s t+21 Te, t+22

Taking the multiplication result as inputs.

Two adders are used to add the inputs and store the
addition results to register.

Another adder is used to add the previous addition
results up and store the sum to register.

Crossbar switch to select four partial sums as outputs.

Experiment setup

Benchmark

« Xilinx Zyng UltraScale ZCU106 (XCZU7EV-
2FFVC1156 FPGA)

 University of Florida sparse matrix

Matrix Rows/Cols Nonzero Density
raefsky1 3242 293409 2.79156%
memplus 17758 99147 0.03144%
stanford 281903 2312497 0.00291%
s3dkt3m2 90449 3686223 0.04506%
psmigr_2 3140 540022 5.47712%

rmal0 46835 2329092 0.10618%

t2d_q9 9801 87025 0.09060%

epbl 14734 95053 0.04379%
Ins_3937 3937 25407 0.04379%
mac_econ 206500 1273389 0.00299%
dw8192 8192 41746 0.06180%
pwtk 217918 11524432 0.02427%

Experiment setup

Parameter Setup
100 MHz
* block width is set to 24
 patch height is set to 64
Baseline
 ReDESK
» ReOrder

Bandwidth utilization

- 0.14

theoretical BU = 0.125 [ReDesk [l ReOrder £ Ours

= 0.12
0.1
0.08
+0.06
= 0.04
< 0.02

+
: 0

L

WS & , A0 Q o) ! gl V~
@ «\e—‘“g t’é“&o 6"*@% W7 08 e o 9‘«6 ’e %x

zation(GFLOP/GB

U

Bandwid

* Theoretical peak BU is 0.125.

« Our work Achieve 1.26x and 1.10x improvement
on BU compared to ReDESK and ReOrder.

Batch height

* The average BU increases with

o 0.12

%0118 o1 2T the increase in batch height.

o Tomwes, . .

2 * A higher batch height means
20116 15 1148

o0 : .
o that the accumulators require
S 32 64 128 256 more LUT resources.

Z atch Height

Resource

ReOrder has the same

IS ReOrder [Ours |2

Zoox |] S T IE hardware as ours

2 1o (2

g 40% L[S « More LUTs

@) + W

y 20% H ¥E

LU S . Fewer FFsYBRAMSY¥DSPs
;:6 LUTs FFs BRAM DSPs URAM © O

Same URAM

Conclusion

e partition matrix and vectors

* read-conflict-free vector buffer

 writing-conflict-free adder tree

THANKS

