Mixed-Traffic Intersection Management Utilizing Connected and Autonomous Vehicles as Traffic Regulators

<u>Pin-Chun Chen</u>¹, Xiangguo Liu², Chung-Wei Lin¹, Chao Huang³, Qi Zhu² ¹National Taiwan University, ²Northwestern University, ³University of Liverpool

January 17, 2023

National Taiwan University

Outline

□ Introduction

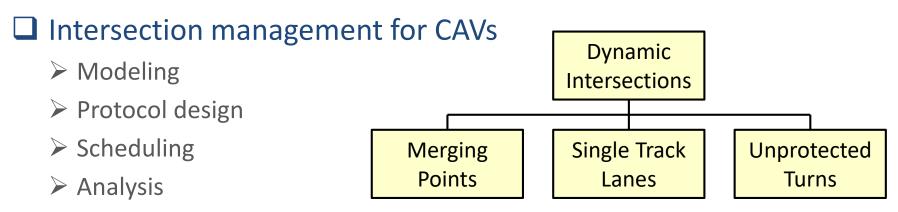
- Motivating Example
- System Model
- Our Approaches
- **Experimental Results**
- Conclusion

Connected and Autonomous Vehicles (CAV)

Great potentials to improve safety and traffic performance

- Precise control compared to human-driving vehicles (HV)
- Vehicle-to-everything communication

Intersection Management



One of the highly-researched areas

Various similar traffic scenarios

Provide extensibility to intersection management

Motivations

- Current studies mostly assume that traffic consists of pure CAVs, without any HV
- CAVs in <u>mixed-traffic</u> intersection protocols suffer performance loss due to the presence of HV
- □ It is challenging to fully utilize CAV's potentials in mixed-traffic
 - HVs do not change their behaviors to accommodate the presence of CAVs

Goal

Lessen the performance loss caused by HV in mixed-traffic intersection

- > Being able to schedule CAVs and HVs within mixed-traffic
- Extendable to dynamic intersections
- Effective even without a high CAV penetration rate

Contributions

□ Schedule CAVs to control the subsequent HVs

- An optimal dynamic programming approach to a single conflict zone model
- An optimal mixed integer linear programming (MILP) formulation for a trajectory-based model
- > An efficient MILP-based approach keeping good solution quality

Experimental results and SUMO simulation indicate that

- Controlling CAVs by our approaches is effective to regulate mixed-traffic even if the CAV penetration rate is low
- This brings incentive to early adoption of CAVs

Outline

□ Introduction

Motivating Example

- System Model
- Our Approaches
- **Experimental Results**

Conclusion

Scheduling in Mixed Traffic

- Inspired by "Dissipation of Stop-And-Go Waves via Control of Autonomous Vehicles: Field Experiments" [Stern 2018]
 - Even if only part of the traffic is controllable within a non-overtaking scenario preceding vehicles can regulate the following vehicles

Motivating Example

□ There are 4 CAVs and 1 HV

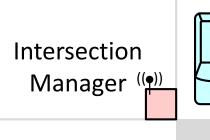
((**•**))

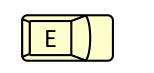
CAV

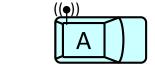
HV

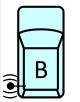
CAVs: A, B, C, and D

≻ HV: E









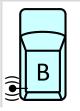
Motivating Example

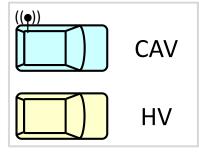
CAV A passes through the intersection first as it arrives at the intersection first

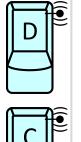
- Leave CAVs B, C, and D to pass through the intersection with the presence of HV E
- Result in performance loss

Intersection

Manager ((•))



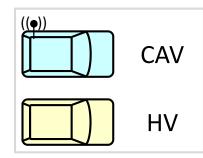


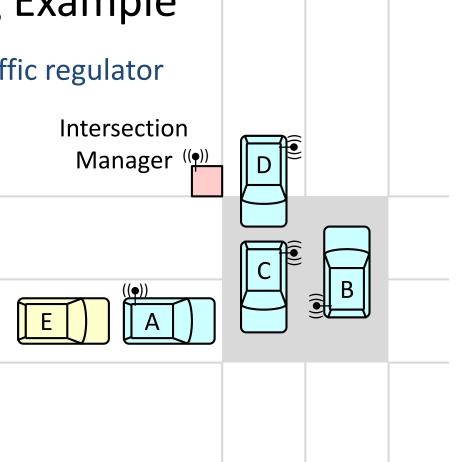


Motivating Example

□ CAV A can play the role as a traffic regulator

- CAV A blocks HV E
- CAVs B, C, and D can pass through the intersection first without the presence of HV E
- The overall performance can be improved





Outline

- □ Introduction
- Motivating Example
- System Model
- Our Approaches
- **Experimental Results**
- Conclusion

Behaviors of CAVs and HVs

- □ An overtaking-prohibited mixed-traffic intersection
- CAVs behave depending on whether there exists an HV at the head (as the first vehicle) of any lane
 - ➢ If yes, CAVs go slower due to the uncertain behaviors of HVs
 - > Otherwise, CAVs may use a more efficient CAV protocol and go faster
- CAVs follow the intersection manager's order to decide when they pass through the intersection
- □ HVs pass through the intersection as soon as possible

Intersection Models

Based on how the vehicles are allowed to enter the conflict zone, we have two intersection models

□ Single conflict zone model

> Only a vehicle can enter the intersection (conflict zone) at a time

□ Trajectory-based model

As long as all the trajectories of the vehicles in the conflict zone do not conflict with each other, vehicles can enter the conflict zone

Problem Formulation (1/2)

Problem input parameters

- \succ V_{I,i}: the i-th vehicle on lane I
- ➤ L: the number of lanes
- \succ N_I: the number of vehicles on lane I
- > H_{I,i}: 1 / 0 if V_{I,i} is an HV / CAV
- \succ A_{I,i}: the estimated arrival time of V_{I,i}
- ➢ G: the time gap for the next passing vehicle if there is no HV at the head on each lane
- ➢ G⁺: the time gap for the next passing vehicle if there exists an HV at the head on a lane

Problem Formulation (2/2)

- Given the input parameters, the problem is to decide the time when each vehicle enters the intersection
 - \succ t_{I,i}: the entering time of V_{I,i}
- The objective is to minimize the entering time of the last passing vehicle
 - $\succ \min \max_{1 \le I \le L, \ 1 \le i \le N_i} t_{I,I}$
 - It also represents the performance of the intersection processing all vehicles

Outline

Introduction

- Motivating Example
- System Model

Our Approaches

- Dynamic Programming Approach
- MILP Formulation
- MILP-Based Approach

Experiments

Conclusion

Our Approaches

Dynamic programming approach

Optimal to the single conflict zone model

□ MILP formulation

Optimal to the trajectory-based model

□ MILP-based approach

Efficient and real-time-applicable

Dynamic Programming Approach (1/2)

- □ In the single conflict zone model, we can represent the system as the number of vehicles passed through each lane
 - State $\Theta = (\theta_1, \theta_2, ..., \theta_L)$
- Given a state Θ, the previous state Θ' must be the same as Θ except for one lane having exact one less passed vehicle
 - > $\theta'_{I} = \theta_{I} 1$ for exact one I, and the objective only depends on the time gap for $v_{I,\theta_{I}}$
 - > Therefore, the optimality holds with the subproblems
- Given a state, the passing time of the next vehicle is also known since the head vehicle of each lane is known

Dynamic Programming Approach (2/2)

$\Box OBJ(\Theta) = \min_{i} (\max (A_{i,\theta_{i}}, OBJ(\Theta'_{i}) + TimeGap(\Theta'_{i}, I)))$

- \succ Θ'_i indicates that Θ is the state derived from Θ' where the vehicle from lane i pass through next
- TimeGap() is the passing time of the next vehicle depending on the state of the intersection

Return an optimal solution to the single conflict zone model with a polynomial time complexity

MILP Formulation

Convert the trajectory-based model and the constraints into MILP formulation

- Overtaking is prohibited
- Time gap must be large enough (for safety)
- ➢ HVs are non-schedulable

Return an optimal solution to the trajectory-based model with an exponential time complexity

MILP-Based Approach

Divide and conquer

- Divide the problem
- Solve the subproblems with MILP
- Combine them for a solution

□ Efficient and real-time-applicable

- Still keep good solution quality, though without guarantee of optimality
- With a given subproblem size, the computation time scales linearly with the problem size

Outline

- □ Introduction
- Motivating Example
- System Model
- Our Approaches
- **Experimental Results**
- Conclusion

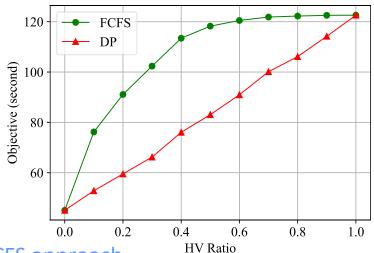
Experimental Setting

□ Set the experimental parameters

- 4 lanes and 5 vehicles on each lane
- \succ G = 1 (second), G⁺ = 3 (second)
- \blacktriangleright Poisson arrival with λ = 0.5 vehicle per second
- Run experiments on a laptop with 1.8GHz Intel Core i7-8550U processor and 16GB memory
- Use Gurobi as the MILP solver
- Compare our approaches with the first-come-first-served (FCFS) approach

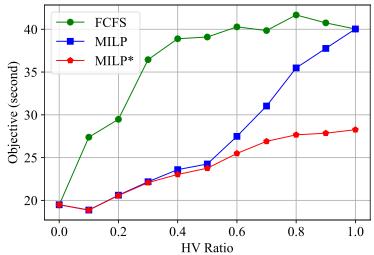
Dynamic Programming Approach

- Comparison between the FCFS approach and the dynamic programming approach for the single conflict zone model
 - > When the CAV penetration rate is 0
 - Without controllable vehicles, the two approaches are the same
 - > When the CAV penetration rate is 1
 - With all controllable vehicles, the two approaches are the same
 - > Otherwise
 - The dynamic approach outperforms the FCFS approach



MILP Formulation

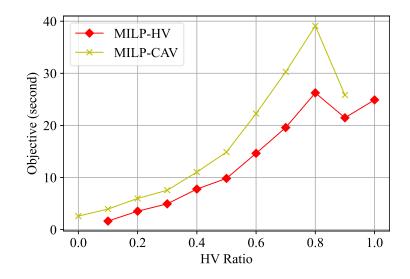
- Comparison between the FCFS approach and the MILP formulation for our trajectory-based model
 - MILP* is the case where HVs are assumed to be connected and schedulable
 - Having half vehicles controllable is comparable to having all vehicles controllable
 - Average runtime 0.42 second



MILP Formulation: CAVs vs HVs

The waiting time of CAVs is larger than that of HVs

Using CAVs to block HVs lets CAVs suffers extra waiting times but improve the overall traffic performance



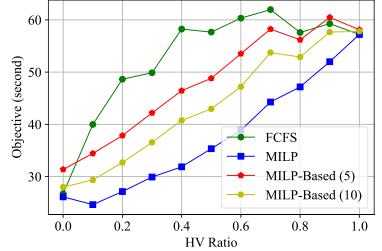
MILP-Based Approach

When the subproblem size increases

> The performance improves

□ When the subproblem size is the number of vehicles

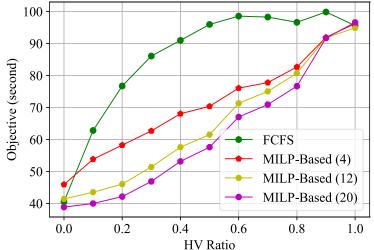
It is equivalent to the MILP formulation which returns an optimal solution



MILP-Based Approach: Computation Time

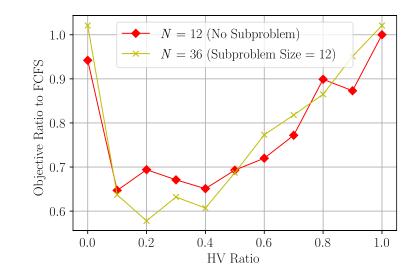
□ Larger subproblem size

- Fewer sub-cases
- Better objective value
- Longer computation time
- Tradeoff between solution quality and computation time
 - The MILP-based approach with subproblem sizes 4, 12, and 20 takes 0.01, 0.08, and 0.42 second, respectively
 - Real-time applicable



MILP-Based Approach vs. MILP Formulation

Splitting a problem into subproblems (solved by the MILPbased approach) with size 12 gives similar improvement as optimally solving a problem (MILP formulation) with size 12



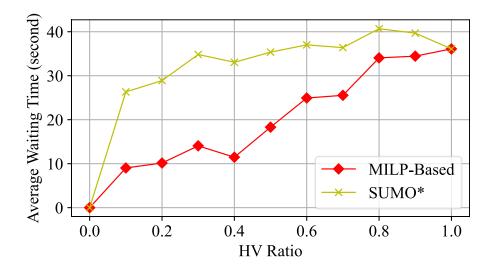
SUMO Simulation Setting

□ Simulation of an unsignalized intersection

Туре	Parameter	Value
Simulation	Simulation Step	0.1 (s)
	Road Length	500 (m)
Intersection Manager	Sensing Range	100 (m)
	Scheduling Period	1 (s)
Vehicle	Max Speed	16 (m/s)
	Max Acc/Deceleration	3/-4.5 (m/s ²)
	Min Gap	2.5 (m)
	Vehicle-Following Model	Krauss Model

SUMO Simulation Results

The MILP-based approach significantly outperforms the SUMO unsignalized intersection



Outline

- □ Introduction
- Motivating Example
- **System Model**
- Our Approaches
- **Experimental Results**
- **Conclusion**

Conclusion

- Target the problem of mixed-traffic intersection management by using CAVs as traffic regulators
 - Dynamic programming approach, MILP formulation, and MILP-based approach
- Controlling CAVs by our approaches is effective to regulate mixed-traffic even if the CAV penetration rate is low
 - > This brings incentive to early adoption of CAVs

Future directions

- > Management with specific lanes for CAVs and HVs
- > Management considering different dynamics of CAVs and HVs

