EFFICIENT HIERARCHICAL MM-WAVE SYSTEM SYNTHESIS WITH EMBEDDED ACCURATE TRANSFORMER AND BALUN ML MODELS

FÁBIO PASSOS

N. LOURENÇO, R. MARTINS, L. MENDES, J. VAZ, N. HORTA

Overview

01 MOTIVATION

MOTIVATION

Entering in 5G/6G era, mm-Wave circuits and systems are key technology enablers

We need circuits with high performances, low cost (small area), power efficient, etc

Such performances are difficult to obtain using manual/traditional design methodologies

Therefore, there is a need for a more efficient methodology that can be used by designers

OUR APPROACH...

Usage of optimization algorithms to automatically design circuits...

02 SYSTEM DESIGN METHODOLOGIES

(...focusing on optimization-based design methodologies)

TOP-DOWN METHODOLOGIES

• Divide and conquer strategies, system hierarchical decomposition

 Designer starts from the system level specifications

TOP-DOWN METHODOLOGIES

• Divide and conquer strategies, system hierarchical decomposition

- Designer starts from the system level specifications
- Specifications transmitted down the hierarchy

TOP-DOWN METHODOLOGIES

• Divide and conquer strategies, system hierarchical decomposition

- Designer starts from the system level specifications
- Specifications transmitted down the hierarchy
- The fact that specifications are transmitted down without knowing if they will be realizable by lower level sub-blocks may lead to costly redesign iterations...!

BOTTOM-UP METHODOLOGIES

- Designer starts from the bottom level
- Ensures all levels are feasible (with the desired specifications)
- Multi-objective algorithms are used to pass
 POFs to the upper level

• 28GHz mm-Wave transmitter in 65nm CMOS technology

IF (3 GHz)

2-STAGE PA

28 GHz

 \square

MODELING PASSIVE COMPONENTS

03

WHY?

Transformers/baluns are highly used in RF/mm-Wave circuits

Foundry's usually do not provide models for transformers (when they do, they are not valid over 20/30GHz)

EM simulations are time-consuming and integrating an EM simulator in optimization-based methodologies is time-prohibitive

Therefore, there is a need for an efficient and accurate model

Machine learning techniques have been applied successfully to the modeling of passive structures and they are proven themselves a valuable candidate solution

MODELING PARAMETERS

- Transformer design parameters and performances
- Design parameters
- Number of turns of the primary (Np) and secondary (Ns) coils, their inner diameters (DinP and DinS), and their turn widths (Wp and Ws).
- Performances parameters
- S-Parameters
- Inductance (L) and quality factor (Q) of the primary and secondary
- coupling factor (k)
- SRF

MODEL VALIDATION (EM SIM)

- Radial Basis Functions based-model with an intelligent modeling strategy
- Two types of models were built: one for transformers and another for baluns (stacked transformers)

TRANSFORMERS

- 1500 transformers for training and 100 for test
- 200 baluns for training and 50 for test

Model	Mean Square Error (%)				
	Lp	Qp	Ls	Qs	k
Transformer	0.14	1.54	0.11	1.93	0.17
Balun	0.15	2.09	0.12	1.57	0.26

BALUNS

[1] F. Passos et al., "Machine Learning Approaches for Transformer Modeling,", SMACD, 2022

MODEL VALIDATION (MEAS.)

- Radial Basis Functions based-model with an intelligent modeling strategy
- Two types of models were built: one for transformers and another for baluns (stacked transformers)

TRANSFORMERS

• 200 baluns for training and 50 for test

Model	Mean Square Error (%)				
	Lp	Qp	Ls	Qs	k
Transformer	0.14	1.54	0.11	1.93	0.17
Balun	0.15	2.09	0.12	1.57	0.26

[1] F. Passos et al., "Machine Learning Approaches for Transformer Modeling,", SMACD, 2022

MODEL APPLICATIONS

PASSIVE COMPONENT SYNTHESIS TOOL: PACOSYT

• A tool (PACOSYT) was created to ease the model usage either as a PDK or in optimization

★ Being tested in industrial environment

PACOSYT GUI

TRANSFORMER SIMULATION (USAGE AS 'PDK' MODEL)

Select transformer parameters and see the performances

TRANSFORMER OPTIMIZATION

Select the desired transformer performances and get the geometry

```
Shell:
    'save(sri = None, lq = None)' - saves the required sri and/or LQ response obtained from the current simulation.
Python 3.8.10 (v3.8.10:3d8993a744, May 3 2021, 09:09:08)
[Clang 12.0.5 (clang-1205.0.22.9)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
Load('/Users/fabiopassos/Desktop/WORK/PACOSYT/pacosyt/PASSIVES_RBF_TRANSF_BALUN_28G_SRF38.model')
>>>
>>> resp, resp_meta = simulate(np = 1,dinp = 117,wp = 14,ns = 1,dins = 56,ws = 6,nt = 1,din = 117,w = 14)
>>>
```


PACOSYT USABILITY

• Integrated in Cadence® Virtuoso® for usage as PDK and "inductor finder"

[2] F. Passos et al., "PACOSYT: A Passive Component Synthesis Tool Based on Machine Learning and Tailored Modeling Strategies Towards Optimal RF and mm-Wave Circuit Designs,", IEEE Journal of Microwaves, 2023

04 EXPERIMENTAL RESULTS

IN HOUSE TOOL: AIDASOFT

- In-house tool developed to optimize circuits
- AIDA uses NSGA-II evolutionary algorithm for circuit optimization

• PACOSYT is integrated and used to create the S-parameter description of passives

IN HOUSE TOOL: AIDASOFT

- In-house tool developed to optimize circuits
- AIDA uses NSGA-II evolutionary algorithm for circuit optimization

- Analog IC Design Automation
- PACOSYT is integrated and used to create the S-parameter description of passives
- Tackles PVT variations
- Yield-aware optimization
- Layout-aware optimization

IN HOUSE TOOL: AIDASOFT

- In-house tool developed to optimize circuits
- AIDA uses NSGA-II evolutionary algorithm for circuit optimization
- PACOSYT is integrated and used to create the S-parameter description of passives
- Tackles PVT variations
- Yield-aware optimization
- Layout-aware optimization
- All tested in Analog/RF circuits
- Currently being extended into mm-Wave and system-level designs
- ★ Being tested in industrial environment

PAPER CASE STUDY

• Transmitter optimization in 65nm technology operating at 26~30GHz with a Vdd=1.2V

27

PASSIVE LEVEL SYNTHESIS

Balun Performance	Balun Specifications		
Amplitude imbalance	< 1 dB		
Phase Imbalance	< 10°		
Insertion Loss (S ₂₁)	Minimize		
Insertion Loss (S ₂₁)	Minimize		
Area	Minimize		

- Two optimizations performed with
 64 individuals and 50 generations
- Optimization lasted 4m

PASSIVE LEVEL SYNTHESIS

Balun Performance	Balun Specifications	
Amplitude imbalance	< 1 dB	
Phase Imbalance	< 10°	
Insertion Loss (S ₂₁)	Minimize	
Insertion Loss (S ₂₁)	Minimize	
Area	Minimize	

- Two optimizations performed with
 64 individuals and 50 generations
- Optimization lasted 4m
- 3,200 transformers evaluated
- If performed with EM simulation it would last approx. 11 days (average of 5 minutes per EM simulation)
- Better efficiency using a model !

CIRCUIT LEVEL SYNTHESIS

PA Performance	PA Specifications	
S ₁₁ @ 26.5-30 GHz	< -12 dB	
S ₂₂ @ 26.5-30 GHz	< -5 dB	
S ₂₁ @ 26.5-30 GHz	> 12 dB	
S ₂₁ Variation (@ 26.5-30 GHz)	< 1.7dB	
Rollet Stb Factor @ 1Hz-120GHz	> 1	
P _{DC}	Minimize (< 70 mW)	
P OUT_MAX	Maximize (> 8 dBm)	
ΡΑΕ _{ΜΑΧ}	Maximize (> 20%)	
Power Gain _{MAX}	> 12 dB	
OP1dB	> 10 dBm	

- Optimization performed with 400 individuals and 150 generations
- Optimization lasted ~42h

evaluated with the model

CIRCUIT LEVEL SYNTHESIS

PA Performance	PA Specifications	
S ₁₁ @ 26.5-30 GHz	< -12 dB	
S ₂₂ @ 26.5-30 GHz	< -5 dB	
S ₂₁ @ 26.5-30 GHz	> 12 dB	
S ₂₁ Variation (@ 26.5-30 GHz)	< 1.7dB	
Rollet Stb Factor @ 1Hz-120GHz	> 1	
P _{DC}	Minimize (< 70 mW)	
P OUT_MAX	Maximize (> 8 dBm)	
ΡΑΕΜΑΧ	Maximize (> 20%)	
Power Gain _{MAX}	> 12 dB	
OP1dB	> 10 dBm	

- Optimization performed with 400 individuals and 150 generations
- Optimization lasted ~42h
- 180,000 transformers evaluated
- If performed with EM simulation it would last approx. 2 years (average of 5 minutes per EM simulation)
- Only possible using a model !!!!

SYSTEM LEVEL SYNTHESIS

Tx Performance	Tx Specifications
Conversion Gain	> 20 dB
P _{DC}	Minimize (< 100 mW)
P OUT_MAX	Maximize (> 8 dBm)
ΡΑΕ _{ΜΑΧ}	Maximize (> 20%)
Power Gain	> 12 dB
OP1dB	> 2.5 dBm

- Three different optimization methodologies:
 - 1. Bottom-up (three leves, device-circuit-system)
 - 2. Bottom-up (two levels, system-circuit)
 - 3. Flat (everything optimized at once)

SYSTEM LEVEL SYNTHESIS

Tx Performance	Tx Specifications
Conversion Gain	> 20 dB
P _{DC}	Minimize (< 100 mW)
P OUT_MAX	Maximize (> 8 dBm)
ΡΑΕ _{ΜΑΧ}	Maximize (> 20%)
Power Gain	> 12 dB
OP1dB	> 2.5 dBm

- Three different optimization methodologies:
 - 1. Bottom-up (three leves, device-circuit-system)
 - 2. Bottom-up (two levels, system-circuit)

Much lower PAE and Pour

SYSTEM LEVEL SYNTHESIS

Tx Performance	Tx Specifications
Conversion Gain	> 20 dB
P _{DC}	Minimize (< 100 mW)
P OUT_MAX	Maximize (> 8 dBm)
ΡΑΕ _{ΜΑΧ}	Maximize (> 20%)
Power Gain	> 12 dB
OP1dB	> 2.5 dBm

- Three different optimization methodologies:
 - 1. Bottom-up (three leves, device-circuit-system)
 - 2. Bottom-up (two levels, system-circuit)
 - 3. Flat (everything optimized at once)

Much lower PAE and higher P_{DC}

ONE OF THE DESIGNS...

Tx Performance	Tx Performances (model)
Conversion Gain	21.53 dB
P _{DC}	21.27 mW
P _{OUT_MAX}	17.08 dBm
ΡΑΕ _{ΜΑΧ}	37.59 %
Power Gain	16.84 dB
OP1dB	16.44 dBm

ONE OF THE DESIGNS...

Tx Performance	Tx Performances (model)	Tx Performances (EM sim)	Error (%)	
Conversion Gain	21.53 dB	21.57 dB	0.0019	
P _{DC}	21.27 mW	21.27 mW	-	
P _{OUT_MAX}	17.08 dBm	17.06 mW	0.0012	
ΡΑΕ _{ΜΑΧ}	37.59 %	37.55 %	0.0011	
Power Gain	16.84 dB	17.07 dB	0.0106	
OP1dB	16.44 dBm	16.39 dBm	0.0031	

FUTURE WORK: PVT AND LAYOUT-AWARE POFs...

FUTURE WORK: PVT AND LAYOUT-AWARE POFs...

CONCLUSIONS

BOTTOM-UP STRATEGY WAS APPLIED TO THE DESIGN OF A TRANSMITTER Baluns optimized at lower level, then the PA at circuit level and than the MIX at system level

02

BALUNS AND TRANSFORMERS SYNTHESIZED USING ML MODEL

The model allows for optimal passive component design in minutes

HUNDREDS OF CIRCUITS SYNTHESIZED IN DAYS RATHER THAN WEEKS/MONTHS

Huge improvement in efficiency

IN THE FUTURE OPTIMIZE CIRCUITS TAKING INTO ACCOUNT PVT VARIATIONS AND LAYOUT Enabling a fully sizing-layout automated methodology

I invite you all to submit works to...

2023 SMACD Conference <u>www.smacd-conference.org</u>

SMACD 2023: 3 TO 5 JULY, FUNCHAL - MADEIRA ISLAND, PORTUG

The **2023 edition** of the International Conference on Synthesis, Modeling, Analysis and Simulation Methods, and Applications to Circuit Design (SMACD) will be held from **3 to 5 July**. It will take place at VidaMar Resort Hotel, a stunning location on Madeira island in Portugal.

SMACD is a forum devoted to modeling, simulation, and synthesis for Analog, Mixed-signal, RF (AMS/RF), and multi-domain (nanoelectronics, biological, MEMS, optoelectronics, etc.) integrated circuits and systems, as well as, emerging technologies and applications. Open-source tools and methods for IC design and experiences with modeling, simulation, and synthesis techniques in diverse application areas are also welcomed. Objective technologies include CMOS, beyond CMOS, and More-than-Moore such as MEMs, power devices, sensors, passives, etc.

Topical Collection in ELECTRONICS MDPI

an Open Access Journal by MDPI

Advanced Design Techniques and EDA Methodologies for Analog, RF and MM -Wave Circuit Design

Guest Editors Dr. Fábio Passos, Dr. Nuno Lourenço, Prof. Dr. Ricardo Martins

> **Topical** Collection

IMPACT

FACTOR

2.690

CITESCORE

3.7

mdpi.com/si/101759

Invitation to submit

THANK YOU!

FABIO.PASSOS@LX.IT.PT

DEEC DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES TÉCNICO LISBOA

ML TECHNIQUES

• All implemented/tested using Python libraries

GAUSSIAN PROCESS REGRESSION	RADIAL BASIS FUNCTION	NEAREST NEIGHBOR	KERNEL RIDGE REGRESSION	RANDOM FOREST REGRESSION	ARTIFICIAL NEURAL NETWORKS
 Near parameterless technique internal optimization which defines its parameters 	 Simpler than GPR and therefore require less memory 	• Simplest technique available (serves as baseline for the others)	• Similar to GPR but without the internal optimization	 Simple model which may be useful to identify multiple trends in the data 	 Good for big data sets and high number of variables
IN THE PAPER	IN THE PAPER	IN THE PAPER	TESTED AFTERWARDS	TESTED AFTERWARDS	TESTED AFTERWARDS

MODEL STRATEGY

MODEL RESULTS

			Technique											
	1		GF	PR*	K	RR	RE	BF*	R	FR	N	N*	A	N
Frequency	Perform	ance	ME (%)	MAPE (%)										
28GHz	N=1:1*	Lp	0.23	0.12	1.04	0.22	0.35	0.16	14.24	2.47	10.62	3.35	2.30	0.50
		Q₽	3.84	1.38	4.86	1.81	3.77	1.53	22.11	9.14	22.14	4.47	139.36	7.82
		Ls	0.26	0.1	1.03	0.31	0.24	0.08	13.09	4.46	16.44	5.61	2.89	0.65
		Qs	7.17	1.98	12.32	4.04	2.2	0.78	16.65	7.90	34.18	9.71	30.19	4.05
		k	0.55	0.18	0.81	0.25	0.45	0.21	28.18	6.56	25.38	8.87	5.84	1.08
	N=1:2	LP	0.57	0.14	0.48	0.15	0.53	0.17	12.03	2.94	11.92	3.88	1.63	0.66
		Q₽	4.59	1.78	5.41	1.84	5.28	1.94	25.51	13.93	27.33	8.39	28.16	5.06
		Ls	0.39	0.16	0.46	0.22	0.53	0.17	15.93	4.84	19.21	7.26	2.74	0.80
		Qs	4.73	1.21	3.53	1.48	4.55	1.49	16.64	7.93	19.95	5.24	18.91	4.31
		k	0.77	0.25	1.15	0.46	0.84	0.28	39.20	9.14	34.19	12.82	3.17	1.09
	N=2:1	LP	0.16	0.14	0.29	0.22	0.06	0.05	12.58	6.87	36.05	10.18	2.26	1.40
		Q₽	1.63	1.13	1.54	0.9	0.71	0.36	18.37	9.83	31.87	10.65	15.53	7.34
		Ls	0.62	0.44	1.09	0.96	0.1	0.07	13.04	4.87	12.96	6.08	2.64	1.01
		Qs	5.83	4.04	6.76	5.14	1.85	0.97	20.57	10.80	29.00	13.96	8.68	3.43
		k	0.5	0.43	1.1	0.82	0.4	0.25	18.07	10.56	35.74	13.40	2.69	0.89

* Present in the paper

CIRCUIT SYNTHESIS USING PACOSYT AND AIDA

PA Performance	PA Specifications	Performances of Selected PA @ 28 GHz (PACOSYT)
S ₁₁ @ 26.5-30 GHz	< -12 dB	-20.102 dB
S ₂₂ @ 26.5-30 GHz	< -5 dB	-5.850 dB
S ₂₁ @ 26.5-30 GHz	> 12 dB	18.885 dB
S ₂₁ Variation (@ 26.5-30 GHz)	< 1.7dB	Complies with spec.
Rollet Stb Factor @ 1Hz-120GHz	> 1	Complies with spec.
PDC	Minimize (< 70 mW)	33.9874 mW
POUT_MAX	Maximize (> 8 dBm)	18.11 dBm
ΡΑΕ _{ΜΑΧ}	Maximize (> 20%)	38.08 %
Power Gain _{MAX}	> 12 dB	18.88 dB
P1dB	> 10 dBm	14.128 dBm

-20

-35

-30

-25

-20

-15

P_{IN} (dBm)

-10

0

-5

5

10

CIRCUIT SYNTHESIS USING PACOSYT AND AIDA

PA Performance	PA Specifications	Performances of Selected PA @ 28 GHz (PACOSYT)	Performances of Selected PA @ 28 GHz (Transf. EM simulated)	Error (%)
S ₁₁ @ 26.5-30 GHz	< -12 dB	-20.102 dB	-20.056 dB	0.087
S ₂₂ @ 26.5-30 GHz	< -5 dB	-5.850 dB	-5.856 dB	0.230
S ₂₁ @ 26.5-30 GHz	> 12 dB	18.885 dB	18.881 dB	0.020
S ₂₁ Variation (@ 26.5-30 GHz)	< 1.7dB	Complies with spec.	Complies with spec.	-
Rollet Stb Factor @ 1Hz-120GHz	> 1	Complies with spec.	Complies with spec.	-
PDC	Minimize (< 70 mW)	33.9874 mW	33.9877 mW	0.001
POUT_MAX	Maximize (> 8 dBm)	18.11 dBm	18.12 dBm	0.055
ΡΑΕ _{ΜΑΧ}	Maximize (> 20%)	38.08 %	38.04%	0.105
Power Gain _{MAX}	> 12 dB	18.88 dB	18.89 dB	0.052
P1dB	> 10 dBm	14.128 dBm	14.125 dBm	0.021

