APOSTLE: Asynchronously Parallel Optimization
Scheme for Sizing Analog Circuits using DNN
Learning

Ahmet F. Budak?, David Smart?, Brian Swahn?, David Z. Pan?

ANALOG 1 ECE Department, UT Austin
DEVICES 2 Analog Devices Inc.

AHEAD OF WHAT'S POSSIBLE™

Analog ICs: Introduction

« Sensor related applications and real-world interfaces require
analog circuits.

* Increasing market demand: Internet of Things (loT), autonomous
and electric vehicles, communication and 5G networks...

- wg
%. ’.) (_\-__11) O 2050
LG O i
3 INTERNETof_ g g =
% THINGS ~] & X $
=0 _ o~ B o BB e

€ o H=

Image Sources: IBM, Ansys, public technology

Introduction >> Problem Formulation >> APOSTLE Framework >> Methods..& >> Results > 2
Contributions

Motivations for Analog Automation

* There exist repeating tasks:

* Design is carried from one process fap to
another.

« Same design needs to be altered for a new set
of performance specifications.

* Analog is here to stay:

0.0
1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
; Year

* Not all analog blocks can be converted to

: digital

Digita « Converting everything to digital and exploiting
== IR the existed automation is not a viable option.

 Better community & computers

Commercial Mixed Signal ASIC

[R.A. Rutenbar, 2010]

Introduction >> Problem Formulation >> APOSTLE Framework >> Methods..& >> Results > 3
Contributions

Analog Design Challenge

System Specification < Simulation is involved
' ‘ everywhere, and it Is
Choose circuit topology sometimes very costly.
(schematic) _ _
! * Manual and iterative
Device sizing — peSr‘il‘:)an:rtztr?ce Process.
v « Sizing/resizing Is required.

Physical layout < >

v }

Integration/Fabrication <

Introduction >> Problem Formulation >> APOSTLE Framework >> Methods.,& >> Results > 4
Contributions

Analog Sizing Task

specifications design parameters & ranges Topology
minimize Power Parameters LB 1]} v
st. DC Gain > 60 dB w -)
CMRR > 80 dB - z’””; 018 | 2 sl e | | o
L2 0.18 2 e [w
PSRR > 80 dB o : : ryml IV T v
Output Swing > 2.4 V o o m Ly M
Output Noise < 3 x 1074 V4 W1 (am) 022 | 150 °—||:, & F“_"
Phase Margin > 60 deg ue Mo
Unity Gain Frequency > 40 MHz Wlim) 022 >0 NE :Il—"“" —| wi e "HI: ::7W_1
Settling Time < 3 x 10~% s : : B ¥)
Static error < 0.1 N3(integer) 1 20 e
Saturation Margin > 50 mV N4(int 1 20)
(integer) Miller OTA
What is the optimal sizing?
Introduction >> Problem Formulation >> APOSTLE Framework >> Methods & >> Results > >

Contributions

APOSTLE

APOSTLE leverages two aspects of sizing automation task to gain real-time
advantage.

1) Analog optimization requires evaluation of different type of
simulations such as ac, dc, transient, noise... and these have different
computation cost.

: Evaluate cheap simulations first to make intermediate
decisions.

2) There could be more than one machine available at a time.
: Adapts a parallel framework instead of serial.

Introduction >> Problem Formulation >> APOSTLE Framework >> Methods.,& >> Results > ®
Contributions

APOSTLE Framework

Initialize Random)))
Population Cheap Sims Done All Sims Done
Sample 135 Sample 136
Update Database
Train DNN Exploration Engine & Cheap Sims
Build rank approximation model >
Transient * AC
Check Available Computing Resources cee eee |+ DC
Expensive Sims
e Sample 157 Sample 160]
e * Transient
New Sample via DNN Exploration Engine
Transient
Run Cheap Simulations K Population/

Calculate Optimistic Rank, r°

\ 4

Opt. Rank: The lower bound of a design’s rank based on the cheap sims.

Run Expensive Simulations

v

1 Threshold rank for running expensive simulations.

Introduction >> Problem Formulation >> APOSTLE Framework >> Contributions & >> Results > /
Methods

APOSTLE Contributions

Initialize Random
Population

Update Database

Train DNN Exploration Engine &
Build rank approximation model

Check Available Computing Resources

New Sample via DNN Exploration Engine

Run Cheap Simulations

Calculate Optimistic Rank, r°

Run Expensive Simulations

DNN Exploration Engine with Missing Data
Ranking Approximation Method

Theory for Finding Threshold Rank

Batch Optimization Algorithm

Introduction >> Problem Formulation >> APOSTLE Framework >> el & >> Results
Methods

DNN Exploration Engine with Missing Data

Training Data of
Expensive Sims.

7,

‘V"(’
NI
\ ‘.\;.g".‘ 74

oV

-

Population
Control

_

~

J

N

itic - expensive

2|

expensive spec
pproximations

Training Data of
Cheap Sims.

cheap spec
approximations

New Sample & Evaluation |\ =

Circuit

Exploration
Engine

% ﬁc\‘; éf/‘) 74
v,

N
e e
pv S
S QIR G T
V/,‘\\V/,

Simulator [€

J

New Sample

Introduction

>> Problem Formulation >> APOSTLE Framework >>

Contributions &
Methods

>

Results

> 9

Rank Approximation Method

Sample 136 Sample 160 Sample 135 Sample 157

| Transient | | Transient
\ J \ J
| |
Build regression model using fully Model should predict ranks based on the
evaluated samples and their ranks cheap evaluations.

Build a model using only the information that will
be available during the inference time.

A

hyperparameter
N
r; = pi(Yie) - a*x0o(Yic)
" N
Optimistic rank GP pred. mean GP pred. std

Introduction >> Problem Formulation >> APOSTLE Framework >> el & >> Results > 10
Methods

Theory: Finding Threshold Rank

r

Design Population

~

!

DNN Exploration

'

Run cheap
simulations

) 4

Vs

Calculate
Optimistic Rank

J

If YES

[

Run expensive
simulations

]7

» What rank is worth to invest time for running
expensive simulations.

1, Should be dependent on the cost of the
expensive simulation: If not expensive at all, it
should be relaxed; if too expensive, it should get
lower, i.e., higher expectations before running
expensive.

r:n, Should also be dependent on the average
guality of new samples proposed by the DNN
exploration strategy.

Introduction >> Problem Formulation >> APOSTLE Framework >> Cerriouiens @ >> Results > =
Methods

Theory: Finding Threshold Rank

Optimization Impact (Ol)

OI(r) = (max(0, Nog —7))°
r: rank of a design

N,: Population size

Ol is larger if r is smaller

: T, and T.:time cost of cheap &

expensive simulations

T™: expected time to
draw a design with
rank better than r*

Partly-Evaluated Sample

Option 1

y

A

| Option 2

Invest time for expensive simulations Get New Sample v

ila DNN Exploration

A\ 4

[Select the option that maximizes optimization impact per time.]

Tth = minr*{’r* c (OI(;jT) _ OI(T,ZLZST) > 0)}

if r° < ;2 Running expensive has greater expected Ol per time.

if r° > r,;, > Exploring a new sample has greater expected Ol per time.

Introduction >> Problem Formulation >> APOSTLE Framework >> el & >> Results > =
Methods

Theory: Finding Threshold Rank

1.0 — u-oa+n.o-01+n, | * If expensive simulations comes for free,
- 0ANmon AN they are always run.
' —— U=0.8*Ng;,,0=0.1*Ngs . . .
— u-osn.o-02:n. | * AS the cost of expensive simulations goes
- large, rth approximates to zero.
2 « If pis small, rth goes small-> raised
0.4 expectations for running expensive
simulations.
0.2 1
0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20
Tel Tc

Introduction >> Problem Formulation >> APOSTLE Framework >> Cerriouiens @ >> Results > 3
Methods

Experiments

» Folded Cascode OTA » Strong-Arm Latch Comparator

Q 20 variables, 28 spec requirements Q 13 variables, 10 spec requirements

Time vs Best FoM for Folded Cascode Time vs Best FoM for SA Latch

1.75 - 6 —_—
o BO
— DNN-OpE —— DNN-Opt
—— GASPAD —— GASPAD
1.25 -
4 .
1.00 -
s
:
0.75 -
2 .
0.50 4
0.25 - 11 \\1
0.00 - 1Y S .~ —
0 20 40 60 80 100 120 0 20 40 60 80 100 120 140
time (mins) time (mins)
The average FoM (lower is better) curve w.r.t time in minutes The average FoM (lower is better) curve w.r.t time in minutes

Introduction >> Problem Formulation >> APOSTLE Framework >> Methods.& >> Results > 14
Contributions

Experiments: APOSTLE vs DNN-Opt

Testcase FCOTA SAComp PGA
of samples APOSTLE 121 93 223
of samples DNN-Opt 162 80 216
total time APOSTLE 18mins 14mins 3.7hrs
total time DNN-Opt 120mins 125mins 27hrs
objective val. APOSTLE | 0.67 mW 2.6 yW NA
objective val. DNN-Opt 1.3mW 33uW NA
T, /Te 1.3 5 10
of bypassed ES 11.8 32.3 54
% of bypassed ES 9.8% 31.6% 24.2%
Tot. CPU units APOSTLE 263 396 1913
Tot. CPU units DNN-Opt 372 480 2376

The percentage overhead of visited
designs by APOSTLE compared to
DNN-Opt is between [-25%, +16%].

APOSTLE'’s time efficiency varies
between [6.7x to 9x], given Bmax = 8.

APOSTLE reaches better objectives
when given the same time.

APOSTLE provided [17% to 30%]
reduction in total CPU time which
proves its efficiency only due to
simulation skipping strategy.

Introduction

>> Problem Formulation >> APOSTLE Framework >>

Methods & >>
Contributions

Results

THANK YOU!

16

