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FPGAs Deployed in the Cloud

• FPGAs in cloud computing scenarios
✓Low-cost, high-performance computing

✓Customized accelerators – compute-intensive workloads
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Multi-Tenant Scenario

• FRIES

✓Flexibility

✓Reliability

✓Improved Performance

✓Efficiency

✓Scalability

FPGA-as-a-service: 
Users → customized applications →

deployed on cloud FPGA
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Security and Trust in FPGA-
Based Computing

• Multiple tenants – sharing same hardware

✓ Adversary → FPGA configuration → harm tenant modules

Man-in-the-
middle attack

Denial-of-service Data leakage

Voltage and 
power-based 

attacks

Adversary



Countermeasures

AWS Design Rule Check (DRC)

✓ Verify area and power constraints

✓ Timing analysis

✗ Loop-free RO not detected

FPGADefender [1]

✓ FPGA bitstreams → netlist graphs

✓ Both combinational and self-clocked 

ROs detected

✗ Requires reverse-engineering (RE) 

→ significant time overhead

[1] T. M. La et al., “FPGADefender: Malicious self-oscillator scanning for Xilinx UltraScale + FPGAs,” 

ACM TRETS, 2020.



Reverse Engineering-Based 
Techniques

✓ Identify malicious signatures in FPGA bitstreams

✓ User-friendly icebox_vlog tool for analysis

✗ Not suitable for large designs

✗ Netlist creation → adds to time overhead

FPGA 

Bitstream

icebox_vlog 
Technology-mapped 

netlist
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Comparison with Prior Work

[1] Dennis Gnad et al., “Checking for Electrical Level Security Threats in Bitstreams for Multi-
tenant FPGAs”, FPT, 2018
[2] T. M. La et al., “FPGADefender: Malicious self-oscillator scanning for Xilinx UltraScale + 
FPGAs,” ACM TRETS, 2020
[3] Hassan Nassar et al., “LoopBreaker: Disabling Interconnects to Mitigate Voltage-Based 
Attacks in Multi-Tenant FPGAs”, ICCAD, 2021

Characteristics [1] [2] [3] Our work

RE used ✔︎ ✔︎ ✔︎ ✗

Detects self-clocked RO ✗ ✔︎ ✗ ✔︎

Detects conditional RO ✗ ✗ ✗ ✔︎

Performs criticality analysis ✗ ✗ ✗ ✔︎



Motivation for New Research

• Prior methods mostly utilize RE-based techniques

✓Does not scale with complex designs

✓ Time-consuming, resource intensive

• Need for machine learning (ML) -based techniques for malicious 
bitstream detection

• Power-hungry RO variants that evade AWS DRC

• Need for criticality analysis of FPGA bitstreams



Contributions

1. Generation of new RO variants 
▪ Loop-free ROs: a rising threat to cloud FPGAs

2. CNN-based classification framework
▪ Feature extraction from bitstream itself

▪ Learn RO-based signatures through static analysis

▪ Evaluation on diverse set of real-world bitstreams

3. Criticality classification of FPGA bitstreams 
▪ Based on frequency-domain representation



Threat Model

Attacker
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• Attacker and victim modules – logically isolated

• Attacker → malicious bitstream → FPGA → DoS



Bitstream Detection Pipeline
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Mapping Bitstreams to Data-Series
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Images corresponding to: (a) benign 

bitstream; (b) malicious bitstream

Apply image augmentation

• Expand training dataset with 

realistic examples from existing 

training data

• Enhance model performance to 

extract meaningful features



Model Training and Evaluation

Benign and malicious 

bitstreams
Bitstream-to-CSV conversion

Plot CSV file as data-series 

images

Define CSVtotal that stores 

images with their labels

Split CSVtotal into CSVtrain

and CSVtest in ratio r:100-r 
CNN-based image 

classification

Detection of malicious 

images
Performance evaluation



Need for Criticality Analysis of 
Bitstreams

• Presence of RO-based signatures – Bitstreams 
inappropriately blocked from FPGA configuration

• ML-based criticality analysis framework
• Detect and block RO-based Trojans

• Evaluated for diverse set of malicious bitstreams



Feature Extraction in the 
Spectral Domain

• Fast Fourier Transform (FFT)
✓Time complexity of 𝑂 𝑛 𝑙𝑜𝑔𝑛 - suitable for large bitstreams

✓Exploratory analysis of FPGA bitstreams

FFT-encoded images: (a) Benign RO (b) Critical RO.



Criticality Analysis Framework

1) FFT-Based Feature Extraction: Extract frequency-domain features from input 

bitstream

2) CNN Training: Utilize frequency-domain features as model input

3) Evaluation: Evaluation methods such as classification accuracy (Ac), F1-score



Experimental Flow
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Target FPGA: VU440, KU085

Keras



Malware Detection Framework

• Neural network model: CNN
✓ Four convolutional, four max pooling, and four 

linear layers

✓ Input: grayscale image (classification)

• Dataset generation:
✓ 95 benign and 80 malicious image files

✓ After image augmentation: 250 image files



Selection of Model Hyperparameters

Hyperparameters Best values

Learning rate 7.5e-5

Optimizer Adam

Loss function Cross Entropy

Number of training epochs 300

Dropout probability 0.25



Exploring flip Techniques

Choose appropriate image augmentation technique: flipud

Technique Training acc. (%) Test acc. (%)

𝑓𝑙𝑖𝑝𝑙𝑟 93.9 95.7

𝒇𝒍𝒊𝒑𝒖𝒅 99.2 96.4

𝑓𝑙𝑖𝑝 (𝑎𝑥𝑖𝑠 1, 2 ) 90.8 87.4



Evaluation Results

Performance Metrics:

1. 𝑇𝑃𝑅𝑚𝑎𝑙: Percentage of malicious bitstreams correctly 
classified as malicious

II. 𝐹𝑃𝑅𝑚𝑎𝑙: Percentage of benign bitstreams incorrectly 
classified as malicious

VU440 KU085

𝑇𝑃𝑅𝑚𝑎𝑙 97.08 95.83

𝐹𝑃𝑅𝑚𝑎𝑙 4.29 7.5

FPGA 
Board

Metrics (%)

VU440 –
• Training accuracy: 99.2%

• Test accuracy: 96.4%

KU085 –
• Training accuracy: 98.4%

• Test accuracy: 95.7%



Time Overhead

• Conversion of user-input bitstream to data-series: 
• Experimentation Platform - 2.4 GHZ Intel Xeon Gold 5115 

CPU with 768 GB of RAM

• Less than 4 minutes of CPU time

• CNN inferencing
• Experimentation Platform - NVIDIA GeForce GTX 1080 GPU

• Takes around 0.03s



Criticality Classification

Classification accuracy (𝐴𝑐 ): Ratio of the number of correct predictions 

to the total number of predictions.

• Convert FPGA bitstream-generated images to spectral domain

• Detect critical RO-based Trojans



Conclusion

• Demonstration of an efficient CNN-based malicious 
bitstream detection framework

• Accurate criticality classification of RO-based circuits

• Easily extended to other FPGA families, with minimum 
modifications


