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Background

* For modern processors, with better performance, the heat produced
Increases

 Effective thermal control is important

« Accurate spatial power information of the entire chip area benefits the
control decision
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Background

Tensor Processing Unit (TPU)

Application-specific integrated circuit (ASIC)

L Patadads

4

Designed for machine learning computation % J?IE:

Unlike GPU - No graphics hardware

More computation power per joule
Coral Edge TPU
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The core module: 4.94mm * 5.06mm

Background

e Sensors cost space and energy
* Number of on-chip sensors is limited

* E.g., Tensor Processor Unit (TPU)
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The core module: 4.94mm * 5.06mm

Background

Sensors cost space and energy

Number of on-chip sensors is limited

E.g., Tensor Processor Unit (TPU)

Power characterization for TPU,
IS rarely studied

Only one overall temperature sensor
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Method

« Characterized TPU power distribution by measuring its surface
temperature in thermal steady-state

« Applied machine learning model to establish the relationship between
the TPU workload and TPU power map
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TPU workload workload

 TPU workloads consists of

1. A pre-compiled machine learning model
2. Input/output data

determine size

* When the model is given, |/O size is fixed, deploy send/receive
so the workload is uniguely determined

« Model features represents workload
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Workload to power map

« Model features represents workload

» \Workload determine power distribution

« We can build a connection between model features and power distribution
(From now on we call them workload features, to distinguish it from our own model later)
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FLIR A325sc
Power map measurement

* We cannot directly measure power distribution

 Instead, we may measure , then
calculate the power map

« Thermal imaging system

L3
0w EF

ARl Host board: Intel i7-8650U

T
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Power map measurement

Run workload  Start
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EThermaI imaging system : Workload
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Thermal-to-power approach 0

« An approximation approach for chips

80
60
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Die Width >0 40

0 Die Length

 Verified by simulation with a high precision

Negative-Laplacian

« Consider the steady state 2D spatial of TPU as T(x,y)
NE[=VT(x, )] =V2T(x,y) >0
plx,y) ~ 0 —V2T(x,y) < 0
with
k = kAz

Where p(x,y) stands for the power density distribution
k and Az for thermal conductivity and chip thickness
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Thermal-to-power approach

 Noise can be a big problem when calculate V?

* The local correlation of noise is very low, but the
real IS smoother

- V2 of noise significantly affect V4T
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Thermal-to-power approach

Discrete Cosine Transform (DCT)

« Convert to spatial frequency domain

B ZZT( ) ﬂ(Zx—l)u n(2y — v O<u<Ww
D, = a,a, X,Y) COS COS 2H ) 0<v<H

x=1y=1

where H, W are the height and width of the map, and
. ={,/1/W u=0 {,/1/}1 v=0

2/W 1<u<W 2/H 1<v<H

* u,v are spatial frequencies along x,y

- {D,,} are the DCT frequency coefficients.
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Thermal-to-power approach

* Noise has a high frequency because it has no spatial relevance

« Major information of

IS In a few low-frequency coefficients

« We can remove the noise by dropping the high frequency terms

W-1H-1

T(x,y) = 2 Z Ay 0Dy cos(
l u=0 v=0
ff
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Thermal-to-power approach

Remove high-
frequency noise

—V?2

Original thermal map Power map m
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Workload features
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Image_shape
width_multiplier
depth_multiplier
pooling_mode
model_size
onchip_mem_used
onchip_mem_remain
offchip_mem_used
total num of op
num of op on TPU

. num of op on CPU

iInference time on TPU
ADD count

AVERAGE_POOL_2D count

CONCATENATION count
CONV_2D count

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
21.
28.
29.
30.
31.

FULLY_CONNECTED count
DEPTHWISE_CONV_2D count
L2_NORMALIZATION count
MAX_POOL_2D count
MEAN count

MUL count

PAD count

QUANTIZE count

RESHAPE count

SOFTMAX count

SUB count

RELU count

REDUCE_MAX count
STRIDED_SLICE count
HARD_SWISH count
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Machine learning model on TPU

* A machine learning model cannot directly run on TPU
* We need to compile it from CPU version to TPU version

« This process record which operations are supported on TPU, model size,
memory usage, ...

 All these features can be collected from the compilation report

TPU Deploy |
mod model

workload RIVERSIDE
-

CPU Compile




Learning-based estimation

* |t is difficult for experiments to cover all workloads
* We cannot keep all the workload-map pairs at runtime

« Solution: train a model to estimate power maps

Machine learning

workload model
features s
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TPU Workloads selection

Popular image recognition models

EfficientNet, ResNet, MobileNet, ..., etc.

7066 datapoints

6359 for training, 707 for testing
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Conditional Generative Adversarial Network (CGAN)

Condition

8192 256x256x 1

| 4x4%256
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Gradients :
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Generator and Discriminator

Generator

Layer
FC
Reshape
Conv_trans
Conv_trans
Conv_trans
Conv_trans
Conv_trans

Conv_trans

Condition

Kernel  #Output Activation
- 8192 Leaky RelLU

- Ax4x512 -
5X5 8x8x512 Leaky RelLU
5x5 16x16x512  Leaky RelU
5x5 32x32x256  Leaky RelU
5x5 64x64x128  Leaky RelU
bx5  128x128x64 Leaky RelU

5X5 256x256x1 -
Condition

/

L

11

|

O

Discriminator

Layer
Conv
Conv
Conv
Conv
Conv
Conv
Conv
FC
(+Cond)FC
FC

Kernel
S 6
X9
5X5
OX9
O5X9
5X5
5X5

#Output
128x128x64
64x64x128
32x32%x256
16x16x512
8x8x512
Ax4x512
2X2x512
512
256
1

Activation
Leaky RelLU
Leaky RelLU
Leaky RelLU
Leaky RelLU
Leaky RelLU
Leaky RelLU
Leaky RelLU
Leaky RelLU
Leaky RelLU
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Result metric

Root-Mean-Square Error (RMSE) S UDEIOCERR SAALN AL A 24 I

_Z Eyalp( y) = p' ()2
RMSE = J o

where p,p’ are the ground truth and the predicted power map
H,W are the height and width of the map
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Results & Discussion

Power Density RMSE | Average Power Density (unit: mW/mm?)
Total Power Percentage Error | Total Power (unit: W)

2.9321/80.6941 4.2078 /52.7701 5.1198/66.2618 9.5839/77.7040
0.0063/2.0171 0.0340/1.3191 0.0522/1.6563 0.1961/1.9423
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« Row #1: Measured power density map (unit: W/cm?=10mW/mm?)

* Row #2: Estimated power density map e
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Result & Discussion

« Average RMSE of power density: 4.98 mW/mm?

Standard deviation: 2.53 m\W/mm?2

Power density range: 0 - 189.34 mW/mm?

Average inference time: 6.9ms on Intel Core i7-10710U

Accurate and fast enough for the real-time power estimation
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Conclusion

* Proposed a machine-learning-based approach for real-time estimation of full-
chip power maps for commercial Google Coral M.2 TPU chips for the first

time.

« Experiment results show that the predictions are accurate, with the RMSE of
only 4.98mW/mm?, or 2.6% of the full-scale error.

* The inference speed on an Intel Core 17-10710U is as fast as 6.9ms, which is
suitable for real-time estimation.
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