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• For modern processors, with better performance, the heat produced 

increases

• Effective thermal control is important

• Accurate spatial power information of the entire chip area benefits the 

control decision

Background
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Tensor Processing Unit (TPU)

• Application-specific integrated circuit (ASIC)

• Designed for machine learning computation

• Unlike GPU - No graphics hardware

• More computation power per joule

Background
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Background

Only one overall temperature sensor

The core module: 4.94mm * 5.06mm

• Sensors cost space and energy

• Number of on-chip sensors is limited

• E.g., Tensor Processor Unit (TPU)

• Power characterization for TPU         

is rarely studied

Coral Edge TPU



• Characterized TPU power distribution by measuring its surface 

temperature in thermal steady-state

• Applied machine learning model to establish the relationship between 

the TPU workload and TPU power map

Method



• TPU workloads consists of

• When the model is given, I/O size is fixed, 

so the workload is uniquely determined

• Model features represents workload

TPU workload

model

TPU

input/
output

determine size

workload

1. A pre-compiled machine learning model

2. Input/output data

deploy send/receive



• Model features represents workload

• Workload determine power distribution

• We can build a connection between model features and power distribution
(From now on we call them workload features, to distinguish it from our own model later)

Workload to power map

power density

DeterminedRepresentmodel
features

workload

(Software level)



Power map measurement

• We cannot directly measure power distribution

• Instead, we may measure thermal map, then 

calculate the power map

• Thermal imaging system

Coral Edge TPU

FLIR A325sc 

Host board: Intel i7-8650U



Power map measurement

• Run workload

• Measure thermal map

• Convert thermal map to power map

• Feed features and maps to our model



Thermal-to-power approach

• An approximation approach for chips

• Verified by simulation with a high precision

• Consider the steady state 2D spatial thermal distribution of TPU as 𝑇 𝑥, 𝑦

with

Where 𝑝 𝑥, 𝑦 stands for the power density distribution

𝜅 and ∆𝑧 for thermal conductivity and chip thickness

𝑝 𝑥, 𝑦 ≈ ൝
𝑘[−∇2𝑇 𝑥, 𝑦 ] −∇2𝑇 𝑥, 𝑦 > 0

0 −∇2𝑇 𝑥, 𝑦 ≤ 0

𝑘 = 𝜅∆𝑧

Negative-Laplacian



Thermal-to-power approach

• Noise can be a big problem when calculate ∇2

• The local correlation of noise is very low, but the 

real temperature map is smoother

• ∇2 of noise significantly affect ∇2𝑇



Thermal-to-power approach

Discrete Cosine Transform (DCT)

• Convert thermal map to spatial frequency domain

where 𝐻,𝑊 are the height and width of the map, and

• 𝑢,𝑣 are spatial frequencies along 𝑥,𝑦
• 𝐷𝑢𝑣 are the DCT frequency coefficients.
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Thermal-to-power approach

• Noise has a high frequency because it has no spatial relevance

• Major information of thermal map is in a few low-frequency coefficients

• We can remove the noise by dropping the high frequency terms
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Thermal-to-power approach

Remove high-
frequency noise

−∇2

Original thermal map Power map



Workload features

1. image_shape

2. width_multiplier

3. depth_multiplier

4. pooling_mode

5. model_size

6. onchip_mem_used

7. onchip_mem_remain

8. offchip_mem_used

9. total num of op

10. num of op on TPU

11. num of op on CPU

12. inference time on TPU

13. ADD count

14. AVERAGE_POOL_2D count

15. CONCATENATION count

16. CONV_2D count

17. FULLY_CONNECTED count

18. DEPTHWISE_CONV_2D count

19. L2_NORMALIZATION count

20. MAX_POOL_2D count

21. MEAN count

22. MUL count

23. PAD count

24. QUANTIZE count

25. RESHAPE count

26. SOFTMAX count

27. SUB count

28. RELU count

29. REDUCE_MAX count

30. STRIDED_SLICE count

31. HARD_SWISH count



• A machine learning model cannot directly run on TPU

• We need to compile it from CPU version to TPU version 

• This process record which operations are supported on TPU, model size, 

memory usage, …

• All these features can be collected from the compilation report

Machine learning model on TPU

TPU
CPU 

model
TPU 

model

Deploy

workload
features

Compiler

Compile



• It is difficult for experiments to cover all workloads

• We cannot keep all the workload-map pairs at runtime

• Solution: train a model to estimate power maps

Learning-based estimation

workload
features

Power density

Machine learning
model



TPU Workloads selection

• Popular image recognition models

• EfficientNet, ResNet, MobileNet, …, etc.

• 7066 datapoints

• 6359 for training, 707 for testing



Conditional Generative Adversarial Network (CGAN)
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Generator

Layer Kernel #Output Activation

FC - 8192 Leaky ReLU

Reshape - 4x4x512 -

Conv_trans 5x5 8x8x512 Leaky ReLU

Conv_trans 5x5 16x16x512 Leaky ReLU

Conv_trans 5x5 32x32x256 Leaky ReLU

Conv_trans 5x5 64x64x128 Leaky ReLU

Conv_trans 5x5 128x128x64 Leaky ReLU

Conv_trans 5x5 256x256x1 -

Discriminator

Layer Kernel #Output Activation

Conv 5x5 128x128x64 Leaky ReLU

Conv 5x5 64x64x128 Leaky ReLU

Conv 5x5 32x32x256 Leaky ReLU

Conv 5x5 16x16x512 Leaky ReLU

Conv 5x5 8x8x512 Leaky ReLU

Conv 5x5 4x4x512 Leaky ReLU

Conv 5x5 2x2x512 Leaky ReLU

FC - 512 Leaky ReLU

(+Cond)FC - 256 Leaky ReLU

FC - 1 -

Generator and Discriminator



Result metric

Root-Mean-Square Error (RMSE)

where 𝑝, 𝑝′ are the ground truth and the predicted power map

𝐻,𝑊 are the height and width of the map

𝑅𝑀𝑆𝐸 =
σ𝑥=1
𝑊 σ𝑦=1

𝐻 𝑝 𝑥, 𝑦 − 𝑝′ 𝑥, 𝑦 2

𝑊 ×𝐻



Results & Discussion

• Row #1: Measured power density map (unit: W/cm2=10mW/mm2)

• Row #2: Estimated power density map

Power Density RMSE | Average Power Density (unit: mW/mm2)
Total Power Percentage Error | Total Power (unit: W)



Result & Discussion

• Average RMSE of power density: 4.98 mW/mm2

• Standard deviation: 2.53 mW/mm2

• Power density range: 0 - 189.34 mW/mm2

• Average inference time: 6.9ms on Intel Core i7-10710U

• Accurate and fast enough for the real-time power estimation



Conclusion

• Proposed a machine-learning-based approach for real-time estimation of full-

chip power maps for commercial Google Coral M.2 TPU chips for the first 

time.

• Experiment results show that the predictions are accurate, with the RMSE of 

only 4.98mW/mm2, or 2.6% of the full-scale error.

• The inference speed on an Intel Core i7-10710U is as fast as 6.9ms, which is 

suitable for real-time estimation.


