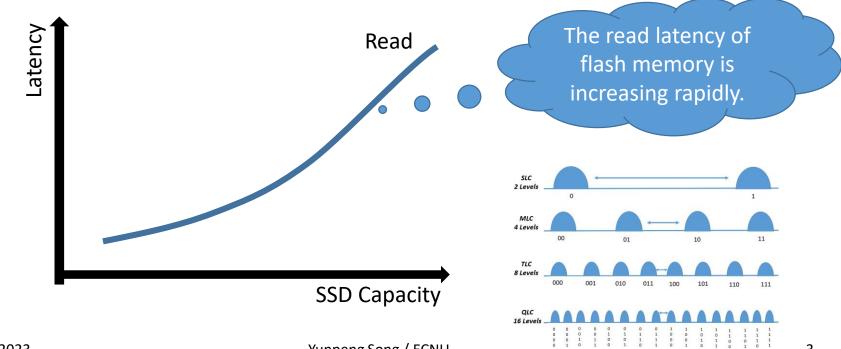
DECC: Differential ECC for Read Performance Optimization on High-Density NAND Flash Memory

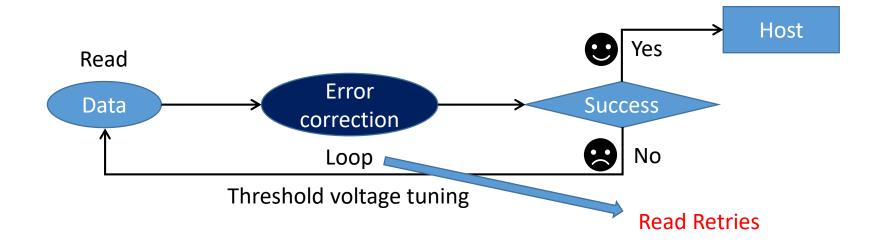
Yunpeng Song, Yina Lv, Liang Shi

Big Data and Intelligent System Lab @ECNU


Background

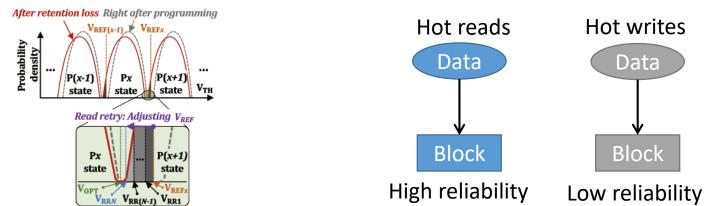
• Solid state drivers(SSDs) are now widely deployed due to the development of high-density and low-cost NAND flash memories.

Background


• Latency of reads is gradually increasing in Solid State Drives

Yunpeng Song / ECNU

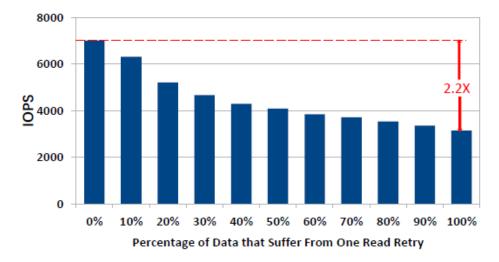
Background


• Error correction overhead due to reduced data reliability

State-of-the-art works

- Reduce error correction overhead
- Threshold voltage tuning
- Optimal threshold voltage prediction

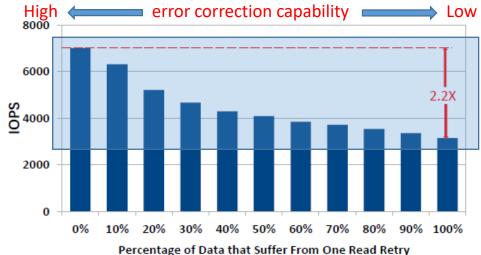
- Data placement
- Placement of data based on access characteristics


None of these works take the effect of different strengths of ECC on performance into consideration!

23 April 2023

Yunpeng Song / ECNU

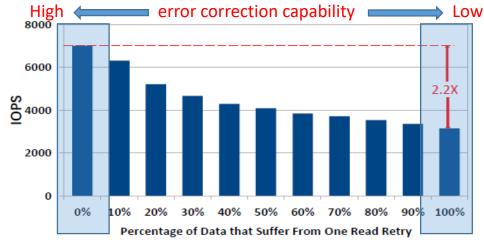
Motivation


• The influence of ECC's error correction capability on the read performance of high-density flash memory.

Under the single error correction capability of ECC

Motivation

• The influence of ECC's error correction capability on the read performance of high-density flash memory.

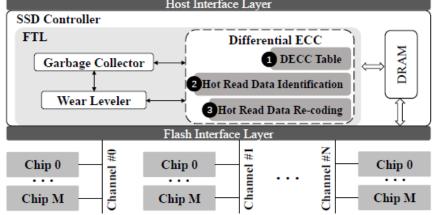

Observation: Read performance will decrease as the error correction capability of the ECC decreases.

23 April 2023

Yunpeng Song / ECNU

Motivation

• The influence of ECC's error correction capability on the read performance of high-density flash memory.


Observation: ECC with high error correction capability reduces the number of read retries, but requires more storage space and vice versa.

Yunpeng Song / ECNU

- --Differential ECC for High-Density NAND Flash Memory
- Propose a construction and selection for DECC
- Propose a hot read data identification scheme for DECC
- A hot read data aware re-coding scheme is proposed to adopt different strengths of ECC

Basic idea:

- Selecting and constructing DECC based on the characteristics of the data
- Recode data that is hot read and read retries occur with strong
 ECC
 Host Interface Layer

Construction and Selection for DECC

- Strong ECC
 - Strong ECC services hot read data
- Normal ECC
 - Normal ECC services other read data

 Table 1: Differential ECC Table

Error Correction Capability	Symbol	Data Characteristic	Code Rate
Strong	$\frac{\text{ECC}_S}{\text{ECC}_N}$	For hot read data	0.8
Normal		For other read data	0.9 [17]

Construction and Selection for DECC

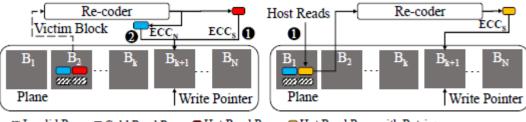
- Strong ECC
 - Strong ECC services hot read data
- Normal ECC
 - Normal ECC services other read data

 Table 1: Differential ECC Table

	Error Correction Capability	Symbol	Data Characteristic	Code Rate
	Strong	ECC _S	For hot read data	0.8 0.9 [17]
After selecting and constructing DECC, hot read data needs to				
be identified in preparation for re-encoding!				

A hot read data identification scheme for DECC

- Overhead Analysis
 - Hot read data identification needs to be adapted to DECC's needs
 - The more complex the hot read data identification method is, the higher the overhead will be.
- Hot read data identification based on the number of reads
 - Low overhead and meets DECC requirements

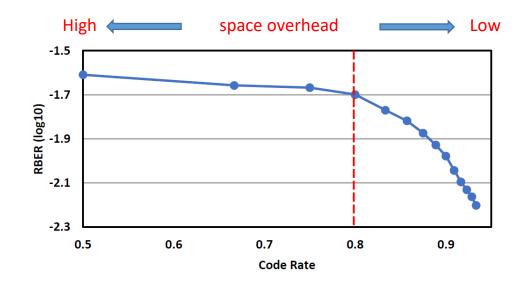

A hot read data identification scheme for DECC

- Overhead Analysis
 - Hot read data identification needs to be adapted to DECC's needs
 - The more complex the hot read data identification method is, the higher the overhead will be.
- Hot read data identification based on the number of reads
 - Low overhead and meets DECC requirements

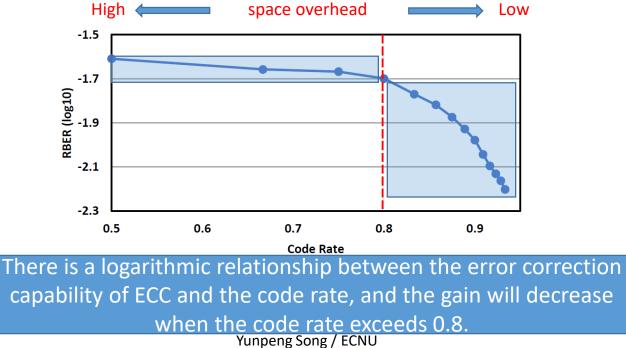
After identifying the hot read data, the hot read data where read retries occur needs to be recoded with strong ECC!

A hot read data aware re-coding scheme

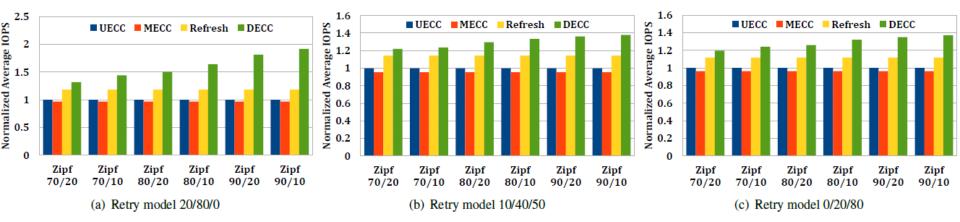
- SSD internal management mechanism
 - Internal management mechanisms such as garbage collection and out-ofplace updates will perform data re-coding
- Active re-coding
 - Identified hot reads are recoded if read retries occur


Ø Invalid Page ■Cold Read Page ■Hot Read Page ■Hot Read Page with Retries

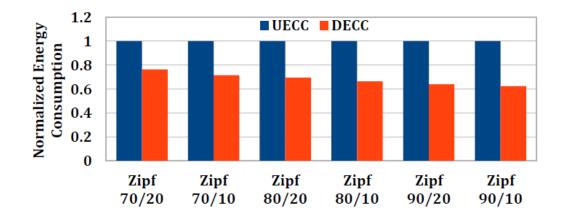
- Parameters:
 - Simulator: FEMU
 - 8 channels, 2 chips per channel
- Workloads:
 - 6 traces from FIO are simulated
- Comparative Experiment:


Parameters	Value	Workloads	Footprint(GB)
# of chips	16	Zipf 70/20	10
Chip size	1GB	Zipf 70/10	10
Plane size	512MB	Zipf 80/20	10
Block size	4MB	Zipf 80/10	10
Page size	16KB	Zipf 90/20	10
Read latency	127µs [17]	Zipf 90/10	10

- **UECC:** a uniform code rate LDPC for the data
- Refresh: hot read data encoded using normal ECC after refresh when retry happens
- MECC: LDPCs with different code rates are selected according to the P/E cycles


• The relationship between error correction capability and code rate of ECC

• The relationship between error correction capability and code rate of ECC



23 April 2023

Compared to the UECC:

MECC: cannot optimize read performance Refresh: achieves 14.8% read performance optimization DECC: achieves 39.3% read performance optimization

DECC is able to reduce the number of read retries, thus reducing power consumption!

Conclusion

- SSDs are now widely deployed but the read performance is degraded due to the low reliability of state-of-the-art high-density and low-cost SSD.
- We propose differential ECC to optimize high-density NAND flash read performance.
 - Construction and Selection for DECC
 - Hot Read Data Identification for DECC
 - Hot Read Data Aware Re-Coding
- Experimental results show that the proposed method can significantly improve read performance.

DECC: Differential ECC for Read Performance Optimization on High-Density NAND Flash Memory

If any questions, please contact us!

Liang Shi Yunpeng Song shi.liang.hk@gmail.com yunpengsonga@gmail.com Thank you! Questions?