ASIA SOUTH PACIFIC

DESIGN
AUTONATION
(ONFERENCE

Optimizing Data Layout for Racetrack
Memory in Embedded Systems

Peng Hui, Edwin H.-M. Sha, Qingfeng Zhuge, Rui Xu, Han Wang
School of Computer Science and Technology, East China Normal University

Outline

 Background
« Motivations
« Techniques

« Evaluation

« Conclusion

Background

Racetrack Memory(RTM)

Advantages:

Nonvolatile
Low latency

High density

Disadvantages:

The data to be accessed needs to be aligned with the
access port, otherwise it need to shift data.

Random data access generates a lot of shifts.

Bits of data
move right

Bits move left

Domain ;

ccccccc

Access Port

Background

RTM has multiple domain block clusters (DBCs).

Each DBC has multiple tapes.

Using SRAM to reduce shifts.

Racetrack Memory

- < <
P E
Pl

| =
3

\"I

Vi

DBC,DBC, DBC,,|.~"

DBC;
TapesTape, Tape,,
vm_ =k -
vm_l_ | -
W [
.] — -
N L — -
velw| [w] [
L T T

DBC: Domain block cluster; V:Variable; b:bit.

On-Chip | Core H
e

F 3

A 4

SPM Controller
Data flow

SPM [GRAM

RTM

Instruction
flow

Main memory |

Objective

Reducing shifts (and used DBCs).

Racetrack Memory

DBCyDBC, DBC.,)|.~

| S ["spam] RIM ||

Which DBC should the data be placed? Where the data should be placed in the DBC ? Which data should be placed on SRAM?

Motivation 1: Grouping

It is a good idea to group data equally across the DBC.

ababcecdefgfefehahahegehijgklmdnop
(a) Access sequence

DBCO|a|blc|d|e[f]g[h| ASO: ababcdefgfefehahahegehgdl
DBC1|i|j|lk|[]l|m|nf{o|p]| ASI: ijklmnop |
IDBC2 [
'DBC3 64 shifts, 2 DBCs [
e g e S, -
(b) Fill each DBC
DBCO[alb[cld] | [|] AS0: ababcdaad |
DBCl|e|f|g|h ASl: efgfefehhhegehg |
DBC2i|jlk|]l AS2: jjkl I
IDBC3|m|n|o|p AS3: mnop 37 shifts, 4 DBCs I

(c) Average

Difficult to reduce in
all_shifts grouping stage

average_shifts = “%DBC

We can increase the number of DBC.

Technique 1

Segment the DBC to increase the number of DBC indirectly.
Select data with non-overlapping life span between segments

ababcdjefgfefehahahegehijglklmdnop
(a) Access sequence

(on

()

Sorted by first appearance:labedpfghljklmpaep

DBCO lalblcid|n
DBC1 (e|fig kI m
DBC2 |h|i]]
DBC3 31 shifts, 3DBCs(Average grouping: 37 shifts, 4DBCs)

(@)
©

Motivation 2: Placement

Data placement algorithm is important to reduce shifts on RTM.

abababacbecbededbdbabdecedecfefaf
(a) Access sequence

2/@\ DBC [a|b|ec|[d]|e]f]
0x0 Ox1 0x2 0x3 Oxd 0x5
lﬁ\s (c) Placement of FCFS and ShiftReduce
8 4 1 E
d)y , @/3 DBC [fla|b]ec|d]e]
0x0 Ox1 0x2 0x3 Oxd Ox5
(b) Data-pair graph (d) Our placement

ASlahahahachchcdcdhdhahdecedecftf&f shifts

53

PT2 12121213232343424212453545303010 4
(e) Port track (PT1 is generated by FCFS and ShifiReduce; PT2 is ours)

Technique 2

The data should be placed next to the data with which it is most continuously accessed.

abababacbebedcecdbdbabdecedecfefaf

3@ Plicedadats o
|

Divide the placed data from middle, then places data based on the weight with the left group and
right group.

Motivation 3: Allocation

It may not get the earning corresponding to the cost of data after moving it to SRAM.

The EOrt track is monotonous.

Asffla b g jl f e ¢ b ¢ d e h i h|]
pr o 1 6 9 5 4 2 1 2 3 4 7T 8 7T 25shifts

bsc [a Lo [e[al el aln]i]J]
0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9

(a) Original access sequence and placement Cost(g) =5
Earning(g) = 25-22=3

AS [a b j f e ¢ b ¢ d e h i hf
PT 0 1 8 5 4 2 1 2 3 4 6 7 6 22shifts
DBC[a[b[c[afe[r[n[ii] sram[g]
0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8
(b) LWSR’ s result

Technique 3

costy = latencyy, on RTM — latencyy not on RTM

AS1| a dI ¢ aI

C

b

d

PT1T 0 3 2 0

(a) Orignal access sequence, placement and port track

2

AS2{ a d a b

d

P2 0 2 0 1

2

1

6 shifts

3

11 shifts

DBC

DBC

a

b

d

0

1

2

b

d

0

1

2

3

|Posg — Posc| + |Pose — Posp| = 3;

Partl: three variable sub-sequences containing c: {d, ¢, a}: 1; {a, ¢, b}: 3-1=2; |p,;. _pos,| =1
Part2: two variable sub-sequence crossing c: {a, d}: 1; {b, d}: 1;

Make the fluctuation of port track smoother to reduce shifts.

Evaluation

Simulator: an in house simulator
RTM: 32-DBCs, one DBC can store 512 variables
SRAM: can store 256 variables

Workloads: 8 traces from Mibence

Evaluation

Shifts generated by different placement methods.

e BFCFS mSOA

40 BSR BGP

30

20

1 kLL
0---.-.

DS1 DS2 DS3 DS4 DSS DS6 DS7 DS8

shifts per instruction
=

FCFS: First Come First Store

SOA: a heuristic algorithm for Single Offset Assignment problem in DSP stack’s frame

SR: a group based algorithm which exploits the locality of accesses in the access sequence and assigns
offset accordingly

BGP: ours

Evaluation

Shifts, latency and energy generated by different allocation methods under hybrid SPM

mFCFS EWA " LMR LWSR W SSM
4 ’_\70 5
2 60 S
o = - - =4
o S3] U =
Q..: o= o= 3
- 2, .2 40 -
€ E 2 T30 85,
= 2, S 22 o 3
- - 10 R
I 2z nnnr I S 2, Mo Ba by Il
0 1 o - - .E 0 [| I | Ll | ‘E 0 1] i
DS1 DS2 DS3 DS4 DS5 DS6 DST7 DS8 DS1 DS2 DS3 DS54 DS5 DS6 DS7 DSS D51 DS2 DS3 DS4 DS5 DS6 DS7 DSB
(a) (b) (c)

FCFS: First Come First Store

WA: moves the data with most write times to SRAM

LMR: most write times to SRAM

LWSR: selects the variables with the maximum sum of the number of shifts and writes each time and
puts it on SRAM

SSM: ours

Evaluation

Shifts generated by combining our methods, and the amount of DBC required by different grouping methods.

mm AVG+BGP mm BGP+SG mwm BGP+SG+SSM AVG —-BGP

= 12 m 32 3
= 10
tJ 4
= 8 o
= &)
k= 6 16 g
S 4 *
o 2
g, L I. I
=0

DS3 DS4 S7 DS8

AVG+BGP: average grouping first, then place data using BGP inside DBC

GBP+SG: grouping data using SG first, then place data using BGP inside DBC

BGP+SG+SSM: grouping data using SG first, then place data using BGP inside DBC, and move some data
to SRAM using SSM.

Conclusion

Proposed:
For pure RTM:
A placement method to placement data close to its most continuously accessed.
A grouping strategy to reducing shifts and used DBCs by using one DBC as multiple DBCs.
For hybrid SPM:
A cost evaluation metric is proposed to determine which variables should be placed on SRAM,
and an allocation method based on the metric is proposed to reduce shifts.

Experiments show that BGP reduces shifts by 17.64% compared with SR on average; SSM is
22.12% better than LWSR. In addition, SG+BGP reduces shifts by up to 36.87% while only using 23
DBCs (32 DBCs in default) compared with the average grouping method paired with BGP.

SIA SOUTH P

A[IHEu‘E‘éT il
ATINTON
COFEENE +

Optimizing Data Layout for Racetrack
Memory in Embedded Systems

Thank you!

Questions?

If any questions, please contact us!

